63 research outputs found

    Rapid and predictable evolution of admixed populations between two Drosophila species pairs

    Get PDF
    The consequences of hybridization are varied, ranging from the origin of new lineages, introgression of some genes between species, to the extinction of one of the hybridizing species. We generated replicate admixed populations between two pairs of sister species of Drosophila: D. simulans and D. mauritiana; and D. yakuba and D. santomea. Each pair consisted of a continental species and an island endemic. The admixed populations were maintained by random mating in discrete generations for over 20 generations. We assessed morphological, behavioral, and fitness-related traits from each replicate population periodically, and sequenced genomic DNA from the populations at generation 20. For both pairs of species, species-specific traits and their genomes regressed to those of the continental species. A few alleles from the island species persisted, but they tended to be proportionally rare among all sites in the genome and were rarely fixed within the populations. This paucity of alleles from the island species was particularly pronounced on the X-chromosome. These results indicate that nearly all foreign genes were quickly eliminated after hybridization and that selection against the minor species genome might be similar across experimental replicates

    Patterns of Population Structure and Introgression Among Recently Differentiated \u3ci\u3eDrosophila melanogaster\u3c/i\u3e Populations

    Get PDF
    Despite a century of genetic analysis, the evolutionary processes that have generated the patterns of exceptional genetic and phenotypic variation in the model organism Drosophila melanogaster remains poorly understood. In particular, how genetic variation is partitioned within its putative ancestral range in Southern Africa remains unresolved. Here, we study patterns of population genetic structure, admixture, and the spatial structuring of candidate incompatibility alleles across a global sample, including 223 new accessions, predominantly from remote regions in Southern Africa. We identify nine major ancestries, six that primarily occur in Africa and one that has not been previously described. We find evidence for both contemporary and historical admixture between ancestries, with admixture rates varying both within and between continents. For example, while previous work has highlighted an admixture zone between broadly defined African and European ancestries in the Caribbean and southeastern USA, we identify West African ancestry as the most likely African contributor. Moreover, loci showing the strongest signal of introgression between West Africa and the Caribbean/southeastern USA include several genes relating to neurological development and male courtship behavior, in line with previous work showing shared mating behaviors between these regions. Finally, while we hypothesized that potential incompatibility loci may contribute to population genetic structure across the range of D. melanogaster; these loci are, on average, not highly differentiated between ancestries. This work contributes to our understanding of the evolutionary history of a key model system, and provides insight into the partitioning of diversity across its range

    Highly Contiguous Assemblies of 101 Drosophilid Genomes

    Get PDF
    Over 100 years of studies in Drosophila melanogaster and related species in the genus Drosophila have facilitated key discoveries in genetics, genomics, and evolution. While high-quality genome assemblies exist for several species in this group, they only encompass a small fraction of the genus. Recent advances in long-read sequencing allow high-quality genome assemblies for tens or even hundreds of species to be efficiently generated. Here, we utilize Oxford Nanopore sequencing to build an open community resource of genome assemblies for 101 lines of 93 drosophilid species encompassing 14 species groups and 35 sub-groups. The genomes are highly contiguous and complete, with an average contig N50 of 10.5 Mb and greater than 97% BUSCO completeness in 97/101 assemblies. We show that Nanopore-based assemblies are highly accurate in coding regions, particularly with respect to coding insertions and deletions. These assemblies, along with a detailed laboratory protocol and assembly pipelines, are released as a public resource and will serve as a starting point for addressing broad questions of genetics, ecology, and evolution at the scale of hundreds of species

    Highly contiguous assemblies of 101 drosophilid genomes

    Get PDF
    Over 100 years of studies in Drosophila melanogaster and related species in the genus Drosophila have facilitated key discoveries in genetics, genomics, and evolution. While high-quality genome assemblies exist for several species in this group, they only encompass a small fraction of the genus. Recent advances in long-read sequencing allow high-quality genome assemblies for tens or even hundreds of species to be efficiently generated. Here, we utilize Oxford Nanopore sequencing to build an open community resource of genome assemblies for 101 lines of 93 drosophilid species encompassing 14 species groups and 35 sub-groups. The genomes are highly contiguous and complete, with an average contig N50 of 10.5 Mb and greater than 97% BUSCO completeness in 97/101 assemblies. We show that Nanopore-based assemblies are highly accurate in coding regions, particularly with respect to coding insertions and deletions. These assemblies, along with a detailed laboratory protocol and assembly pipelines, are released as a public resource and will serve as a starting point for addressing broad questions of genetics, ecology, and evolution at the scale of hundreds of species

    Expanding the stdpopsim species catalog, and lessons learned for realistic genome simulations

    Get PDF
    Simulation is a key tool in population genetics for both methods development and empirical research, but producing simulations that recapitulate the main features of genomic datasets remains a major obstacle. Today, more realistic simulations are possible thanks to large increases in the quantity and quality of available genetic data, and the sophistication of inference and simulation software. However, implementing these simulations still requires substantial time and specialized knowledge. These challenges are especially pronounced for simulating genomes for species that are not well-studied, since it is not always clear what information is required to produce simulations with a level of realism sufficient to confidently answer a given question. The community-developed framework stdpopsim seeks to lower this barrier by facilitating the simulation of complex population genetic models using up-to-date information. The initial version of stdpopsim focused on establishing this framework using six well-characterized model species (Adrion et al., 2020). Here, we report on major improvements made in the new release of stdpopsim (version 0.2), which includes a significant expansion of the species catalog and substantial additions to simulation capabilities. Features added to improve the realism of the simulated genomes include non-crossover recombination and provision of species-specific genomic annotations. Through community-driven efforts, we expanded the number of species in the catalog more than threefold and broadened coverage across the tree of life. During the process of expanding the catalog, we have identified common sticking points and developed the best practices for setting up genome-scale simulations. We describe the input data required for generating a realistic simulation, suggest good practices for obtaining the relevant information from the literature, and discuss common pitfalls and major considerations. These improvements to stdpopsim aim to further promote the use of realistic whole-genome population genetic simulations, especially in non-model organisms, making them available, transparent, and accessible to everyone

    Welcome; Greetings

    Get PDF

    Teaching Barry Hannah

    No full text
    Jay Watson, moderato

    Leveraging shared ancestral variation to detect local introgression.

    No full text
    Introgression is a common evolutionary phenomenon that results in shared genetic material across non-sister taxa. Existing statistical methods such as Patterson's D statistic can detect introgression by measuring an excess of shared derived alleles between populations. The D statistic is effective to detect genome-wide patterns of introgression but can give spurious inferences of introgression when applied to local regions. We propose a new statistic, D+, that leverages both shared ancestral and derived alleles to infer local introgressed regions. Incorporating both shared derived and ancestral alleles increases the number of informative sites per region, improving our ability to identify local introgression. We use a coalescent framework to derive the expected value of this statistic as a function of different demographic parameters under an instantaneous admixture model and use coalescent simulations to compute the power and precision of D+. While the power of D and D+ is comparable, D+ has better precision than D. We apply D+ to empirical data from the 1000 Genome Project and Heliconius butterflies to infer local targets of introgression in humans and in butterflies

    Distribution of <i>D</i> values conditioned on coalescent histories.

    No full text
    Based on 100,000 replicate simulations of unliked loci with a mutation rate of 1.5e-8 the distributions of D are shown for coalescent histories of ILS with no introgression (top row), and coalescent histories of ILS (middle row) vs introgression (bottom row) given and admixture proportion of 0.03 and the IUA demographic model described in the methods section for loci of size 10kb (column A), 20kb (column B), 30kb (column C), 40kb (column D), and 50kb (column E). (TIFF)</p

    Description of the supplemental analyses.

    No full text
    Introgression is a common evolutionary phenomenon that results in shared genetic material across non-sister taxa. Existing statistical methods such as Patterson’s D statistic can detect introgression by measuring an excess of shared derived alleles between populations. The D statistic is effective to detect genome-wide patterns of introgression but can give spurious inferences of introgression when applied to local regions. We propose a new statistic, D+, that leverages both shared ancestral and derived alleles to infer local introgressed regions. Incorporating both shared derived and ancestral alleles increases the number of informative sites per region, improving our ability to identify local introgression. We use a coalescent framework to derive the expected value of this statistic as a function of different demographic parameters under an instantaneous admixture model and use coalescent simulations to compute the power and precision of D+. While the power of D and D+ is comparable, D+ has better precision than D. We apply D+ to empirical data from the 1000 Genome Project and Heliconius butterflies to infer local targets of introgression in humans and in butterflies.</div
    • …
    corecore