5,992 research outputs found

    A 2.5D BEM-FEM using a spectral approach to study scattered waves in fluid–solid interaction problems

    Get PDF
    42nd International Conference on Boundary Elements and other Mesh Reduction Methods, BEM/MRM 2019; ITeCons-University of Coimbra, Coimbra; Portugal; 2 July 2019 through 4 July 2019. - Publicado en WIT Transactions on Engineering Sciences, Volume 126, 2019, Pages 111-123This work presents a two-and-a-half dimensional (2.5D) spectral formulation based on the finite element method (FEM) and the boundary element method (BEM) to study wave propagation in acoustic and elastic waveguides. The analysis involved superposing two dimensional (2D) problems with different longitudinal wavenumbers. A spectral finite element (SFEM) is proposed to represent waveguides in solids with arbitrary cross-section. Moreover, the BEM is extended to its spectral formulation (SBEM) to study unbounded fluid media and acoustic enclosures. Both approaches use Lagrange polynomials as element shape functions at the Legendre–Gauss–Lobatto (LGL) points. The fluid and solid subdomains are coupled by applying the appropriate boundary conditions at the limiting interface. The proposed method is verified by means of a benchmark problem regarding the scattering of waves by an elastic inclusion. The convergence and the computational effort are evaluated for different h-p strategies. Numerical results show good agreement with the reference solution. Finally, the proposed method is used to study the pressure field generated by an array of elastic fluid-filled scatterers immersed in an acoustic mediumMinisterio de Economía y Competitividad BIA2016-75042-C2-1-

    A novel 2.5D spectral approach for studying thin-walled waveguides with fluid-acoustic interaction

    Get PDF
    This paper presents a novel formulation of two spectral elements to study guided waves in coupled problems involving thin-walled structures and fluid-acoustic enclosures. The aim of the proposed work is the development of a new efficient computational method to study problems where geometry and properties are invariant in one direction, commonly found in the analysis of guided waves. This assumption allows using a two-and-a-half dimensional (2.5D) spectral formulation in the wavenumber-frequency domain. The novelty of the proposed work is the formulation of spectral plate and fluid elements with an arbitrary order in 2.5D. A plate element based on a Reissner-Mindlin/Kirchhoff-Love mixed formulation is proposed to represent the thin-walled structure. This element uses approximation functions to overcome the difficulties to formulate elements with an arbitrary order from functions. The proposed element uses a substitute transverse shear strain field to avoid shear locking effects. Three benchmark problems are studied to check the convergence and the computational effort for different strategies. Accurate results are found with an appropriate combination of element size and order of the approximation functions allowing at least six nodes per wavelength. The effectiveness of the proposed elements is demonstrated studying the wave propagation in a water duct with a flexible side and an acoustic cavity coupled to a Helmholtz resonator.Ministerio de Economía y Competitividad BIA2013-43085-P y BIA2016-75042-C2-1-RCentro Informático Científico de Andalucía (CICA

    Magnetic field shielding of underground cable duct banks

    Get PDF
    In this paper an in-depth parametric analysis of shielding effectiveness obtained when using ferromagnetic or conductive screens to mitigate the field generated by duct banks is presented. Due to the need of a case-by-case approach, all the simulations, performed by a finite element software (GetDp), are applied to a case study composed by 9 (3 × 3) ducts, with six of them including high voltage single-core cables and the three left empty for eventual future expansion. Two shielding geometries are tested: horizontal and U-reverse, changing in each one the main parameters: width, thickness, clearance to conductors, etc. Moreover, the conductors are grouped in two balanced in-phase three-phase circuits arranged in three configurations: vertical, horizontal and triangular. The mutual phase ordering of both circuits is the one that minimizes the field, so no further field reduction can be obtained by simple methods. The power losses and cost of different shielding solutions are also presented, including the effect of adding a third circuit if required

    Hybrid 2D/3D fully coupled electrothermal model for three-core submarine armored cables

    Get PDF
    The computation of the power losses in submarine three-core lead sheathed armored cables is overestimated by the IEC 60287 standard, and hence its size and cost. 3D finite element simulations in COMSOL Multiphysics have proved to provide accurate results in losses computation thanks to recent advances that help in reducing the model length by applying rotated periodicity boundary conditions [1,2]. However, for obtaining the ampacity of a particular cable a fully coupled 3D electrothermal model would require a highly detailed 3D geometry, something that can be difficult due to the special operations required to create and mesh the geometry for applying such boundary conditions [3]

    Experimental validation of ultra-shortened 3D finite element electromagnetic modeling of three-core armored cables at power frequency

    Get PDF
    Due to recent advances, the numerical analysis of submarine three-core armored cables can nowadays be developed through the finite element method (FEM) in a small slice of the cable. This strongly reduces the computational burden and simulation time. However, the performance of this ultra-shortened 3D-FEM model is still to be fully assessed with experimental measurements. This paper focuses on this validation for an extensive variety of situations through the experimental measurements available in the specialized literature for up to 10 actual cables. In particular, it deals not only with relevant calculations at power frequency, like the series resistance and inductive reactance or the induced sheath current, but also with other aspects never analyzed before through 3D-FEM simulations, such as the zero sequence impedance, the magnetic field distribution around the power cable, as well as side effects due to the nonlinear properties of the armor wires. All this considering different armoring and sheath bonding configurations. Results show a very good agreement between measured and computed values, presenting the ultra-shortened 3D-FEM model as a suitable tool for the analysis and design of three-core armored cables, and opening the possibility to reduce the need of extensive experimental tests in the design stage of new cables.FEDER / Ministerio de Ciencia e Innovación - Agencia Estatal de Investigación (Spain) project ENE2017-89669-RUniversidad de Sevilla (Spain) VI PPIT-US grant 2018/0000074

    A 2.5D spectral approach to represent acoustic and elastic waveguides interaction on thin slab structures

    Get PDF
    Faculty of Civil and Industrial Engineering; Rome; Italy; 10 September 2017 through 13 September 2017In this paper, we propose a spectral element method (SEM) to study guided waves in coupled problems involving thin-walled structures and fluid-acoustic cavities. The numerical method is based on the subdomain decomposition of the fluid-structure system. Two spectral elements are developed to represent the fluid and the structure. A plate element based on a mixed ReissnerMindlin and Kirchhoff-Love formulation is proposed to represent the thin-walled structure. This element uses C0 approximation functions to overcome the difficulties to formulate elements with arbitrary order from C1 functions. The proposed element uses a substitute transverse shear strain field resulting free shear locking. The fluid element is derived from the Helmholtz equation. These elements use Lagrange polynomials as shape functions at the Legendre-Gauss-Lobatto (LGL) points. The analysis is carried out by a two-and-a-half dimension (2.5D) approach in the wavenumber-frequency domain. The guided wave in a fluid cavity with a flexible side is analysed.Ministerio de Economía y Competitividad. BIA2013-43085-PMinisterio de Economía y Competitividad. BIA2016-75042-C2-1-

    On Simplified 3D Finite Element Simulations of Three-Core Armored Power Cables

    Get PDF
    This paper analyzes different ways to electromagnetically simulate three-core armored cables in 3D by means of the finite element method. Full periodic models, as lengthy as 36 m, are developed to evaluate the accuracy when simulating only a small portion of the cable, as commonly employed in the literature. The adequate length and boundary conditions for having the same accuracy of full periodic models are also studied. To achieve this aim, five medium voltage and high voltage armored cables are analyzed, obtaining the minimum length of the cable that may be simulated for having accurate results in shorter time and with less computational burden. This also results in the proposal of a new method comprising the advantages of short geometries and the applicability of periodic boundary conditions. Its accuracy is compared with experimental measurements and the International Electrotechnical Commission (IEC) standard for 145 kV and 245 kV cables. The results show a very good agreement between simulations and measurements (errors below 4%), obtaining a reduction in the computation time of about 90%. This new method brings a more effective tool for saving time and computational resources in cable design and the development of new analytical expressions for improving the IEC standard.Agencia Estatal de Investigación (AEI) ENE2017-89669-RFondo Europeo de Desarrollo Regional ( FEDER, UE) ENE2017-89669-RUniversidad de Sevilla (VI PPIT-US) 2018/0000074

    Detection of Non-Technical Losses in Smart Distribution Networks: a Review

    Get PDF
    With the advent of smart grids, distribution utilities have initiated a large deployment of smart meters on the premises of the consumers. The enormous amount of data obtained from the consumers and communicated to the utility give new perspectives and possibilities for various analytics-based applications. In this paper the current smart metering-based energy-theft detection schemes are reviewed and discussed according to two main distinctive categories: A) system statebased, and B) arti cial intelligence-based.Comisión Europea FP7-PEOPLE-2013-IT

    Acoustic waves scattered by elastic waveguides using a spectral approach with a 2.5D coupled boundary-finite element method

    Get PDF
    This work presents a two-and-a-half dimensional (2.5D) spectral formulation based on the finite element method (FEM) and the boundary element method (BEM) to study wave propagation in acoustic and elastic waveguides. The analysis involved superposing two dimensional (2D) problems with different longitudinal wavenumbers. A spectral finite element (SFEM) is proposed to represent waveguides in solids with arbitrary cross-section. Moreover, the BEM is extended to its spectral formulation (SBEM) to study unbounded fluid media and acoustic enclosures. Both approaches use Lagrange polynomials as element shape functions at the Legendre–Gauss–Lobatto (LGL) points. The fluid and solid subdomains are coupled by applying the appropriate boundary conditions at the limiting interface. The proposed method is verified by means of two benchmark problems: wave propagation in an unbounded acoustic medium and the scattering of waves by an elastic inclusion. The convergence and the computational effort are evaluated for different strategies. Numerical results show good agreement with the reference solution. Finally, the proposed method is used to study the pressure field generated by an array of elastic fluid-filled scatterers immersed in an acoustic mediumMinisterio de Economía y Competitividad BIA2016-75042-C2-1-RFondos FEDER POCI-01-0247-FEDER-01775

    Impact of electromagnetic losses in closed two-component magnetic shields on the ampacity of underground power cables

    Get PDF
    In this paper two typical arrangements of underground single-core high voltage three-phase power cables (flat and trefoil protected by PVC pipes) inside a closed shield of three different materials (low-carbon steel, non-oriented grain steel and aluminium) are analysed. The shield has two components: a U-shaped base and a flat plate (cover) located on top of the base. Whereas most of previous papers on this subject only dealt with the degree of mitigation obtained with each material, this paper, in addition to also addressing this issue, mainly focusses on the effect that electromagnetic losses induced in the shield have on the ampacity of the cable and the cost involved (material and losses). To obtain the numerical results, a high number of simulations by a well-known commercial finite element method software (COMSOL Multiphysics) have been performed. The results obtained in the numerous cases analysed are widely commented and the solutions that enable an important mitigation with no current derating and at a comparatively low cost are highlighted
    corecore