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Abstract

In this paper, we propose a spectral element method (SEM) to study guided waves in coupled problems involving thin-walled
structures and fluid-acoustic cavities. The numerical method is based on the subdomain decomposition of the fluid-structure
system. Two spectral elements are developed to represent the fluid and the structure. A plate element based on a mixed Reissner-
Mindlin and Kirchhoff-Love formulation is proposed to represent the thin-walled structure. This element uses C0 approximation
functions to overcome the difficulties to formulate elements with arbitrary order from C1 functions. The proposed element uses
a substitute transverse shear strain field resulting free shear locking. The fluid element is derived from the Helmholtz equation.
These elements use Lagrange polynomials as shape functions at the Legendre-Gauss-Lobatto (LGL) points. The analysis is carried
out by a two-and-a-half dimension (2.5D) approach in the wavenumber-frequency domain. The guided wave in a fluid cavity with
a flexible side is analysed.
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1. Introduction

Time-harmonic wave propagation, such as fluid acoustics and solid scattering, is a common phenomenon that ap-
pears in many engineering fields. The propagation of acoustic waves triggered by static and moving pressure sources,
the vibration assessment and the acoustic insulation all involve fluid and solid interaction and it should be considered
rigorously. The finite element method (FEM) has been used in several works to predict the response of fluid-structure
problems. For the low frequency range, the conventional finite elements with linear shape functions represent accu-
rately the fluid and solid scattering waves. However, at high frequencies, these functions do not provide reliable results
due to so-called pollution effects [1,2]: the accuracy of the numerical solution deteriorates with increasing the non-
dimensional wavenumber and it is not enough the commonly employed rule of thumb of n elements per wavelength
[3]. Higher element resolutions are required in order to obtain results with reasonable accuracy.
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The method proposed regards with a 2.5D approach based on the SEM to study wave propagation in fluid-structure
interaction (FSI) problems with invariant cross-section acting as waveguides. The 2.5 D approach can, in some cases
where the geometry is invariant along one direction, be beneficial especially at high frequency since it only requires the
discretization of a 2D problem. The structure is modelled as a thin-walled waveguide [4] using a plate element based
on the Kirchhoff-Love and the Reissner-Mindlin formulations. In this way, the structure behaves as a thin plate in the
waveguide propagation direction but the shear effect in the cross-section is properly considered. The element shape
functions only require C0 continuity which it results in a simplification regarding C1 elements [5]. The plate element
formulation employs an stabilised auxiliary shear strain field instead of reduced or selective integration procedures to
avoid the shear locking [6]. The fluid spectral element is derived from the FEM based on the Helmholtz equation [7].
The proposed method is used to study the wave propagation in an acoustic waveguide with a flexible wall [9,10].

2. Numerical model

The numerical model is based on a two-and-a-half dimensional spectral element formulation for structure (Ωs) and
fluid (Ω f ) subdomains (Figure 1). The structural behaviour is governed by the equilibrium equation for a contin-
uum solid and the fluid by the Helmholtz acoustic wave equation, accounting for Neumann and Dirichlet boundary
conditions (BC). The coupling between both formulations is done by imposing appropriate boundary conditions at
the fluid-structure interface Γq. Equilibrium of normal pressure, compatibility of normal displacement and null shear
stresses are imposed at the interface Γq. The governing equations and the boundary conditions can be written as
follows: 

∇σ + b = −ω2ρsus atΩs , with BC
∇2 p + k2

f p = 0 atΩ f , with BC
usnT

qs = u f nT
q f at Γq

σnqs + p = 0 at Γq

(1)

where the variables in the solid equation are the stress tensor σ, the body force vector b, the displacement vector
us, the solid density ρs and the angular frequency ω. The Helmholtz equation defines the pressure field p for a fluid
wavenumber k f = ω/c f , where c f is the sound wave propagation velocity. Moreover, the coupling conditions include
the fluid particle displacements u f and the outward solid and fluid normals at Γq, nqs and nq f , respectively. The
2.5D formulation is adressed as the superposition of 2D problems with different longitudinal wavenumber kz [4,11].
Therefore, the frequency-wavenumber representation depends on (x, y, kz, ω).
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Fig. 1: Fluid-structure subdomains.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/158965075?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2017.09.362&domain=pdf


 FJ. Cruz-Muñoz  et al. / Procedia Engineering 199 (2017) 1374–1379 1375
Available online at www.sciencedirect.com

Procedia Engineering 00 (2017) 000–000
www.elsevier.com/locate/procedia

X International Conference on Structural Dynamics, EURODYN 2017

A 2.5D spectral approach to represent acoustic and elastic
waveguides interaction on thin slab structures

F.J. Cruz-Muñoza, A. Romeroa,∗, A. Tadeub, P. Galvı́na
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Fig. 1: Fluid-structure subdomains.



1376 FJ. Cruz-Muñoz  et al. / Procedia Engineering 199 (2017) 1374–1379
F.J. Cruz-Muñoz et al. / Procedia Engineering 00 (2017) 000–000 3

3. Numerical example

In this section, an example to show the possibilities of the proposed methodology for studying fluid–structure
interaction problems was considered. The example represented an infinite cavity with one flexible side subjected to
a harmonic bending moment M (Figure 2). At the remaining three sides, boundary condition vn = 0 were provided.
The system dimensions are width W = 10 m and height H = 4 m.

x
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HΩ f

Ωs
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Fig. 2: (a) Acoustic cavity with a flexible gate. (b) Discretisation.

In this work, we study the 3D response of the fluid-structure system considering that the cross-section and the
problem properties remains invariant along the z direction. The structure was modelled as a simply supported slab of
thickness t = 0.1202 m, Young modulus E = 2.1 × 1011 N/m2, Poisson’s ratio ν = 0.3 and density ρ = 416 kg/m3.
These properties give a bending stiffness D = Et3/12(1− ν2) and a mass per unit length m = ρt equivalent to the beam
described in References [9,10]. The problem discretisation was set to 1/h = 4 m−1 using a proper element order to
ensure a nodal density per fluid wavelenght dλ = 6.

4 F.J. Cruz-Muñoz et al. / Procedia Engineering 00 (2017) 000–000

Firstly, the phase velocity of the FSI problem was computed to investigate the propagating modes of the system.
Besides, the phase velocities were compared with those obtained from the structure and the fluid cavity neglecting the
interaction between them.

Figure 3 shows the phase velocity C = ω/kz for a frequency range until 10240 Hz. The slab phase velocities (Figure
3.(a)) exhibits several cut-off frequencies which are in accordance with the natural frequencies of the equivalent
simply-supported beam, fn = 0.5πn2(EI/mW4)0.5. Later, the waves become propagatives and tend to the phase
velocity CL of the propagating plane waves in the slab [8]. The phase velocity curves were found to be dispersive over
all the frequency range.
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Fig. 3: Phase velocity for (a) the structure, (b) the fluid and (c) the coupled fluid-structure system.

On the other hand, the phase velocities for a rectangular acoustic waveguide with dimension W × H are given by

Cmn = c2
f

(
(mπ/kzW)2 + (nπ/kzH)2 + 1

)0.5
, where Cmn is the phase velocity related to the propagating acoustic mode

at the cut-off frequency fmn = c f /2π((mπ/W)2 + (nπ/H)2)0.5. For the sake of simplicity, Figure 3.(b) only presents the
phase velocity curves for the first six acoustic modes given by the frequencies f00 = 0 Hz, f10 = 75 Hz, f20 = 150 Hz,
f01 = 187.5 Hz, f11 = 201.9 Hz and f31 = 225 Hz. The first acoustic mode has a non-dispersive phase velocity equals
to the sound propagation velocity, c f , while higher modes are dispersive with a similar behaviour going to c f above
the cut-off frequency fmn.

The phase velocity of the coupled problem provides the structural and the acoustic propagating modes. Figure
3.(c) presents three kinds of phase velocity curves: (i) structure propagating modes with low fluid interaction, (ii)
acoustic propagating modes with low interaction with the structure and (iii) coupled fluid-structure interaction modes.
The first type of propagating modes exhibits a similar trend to those of the uncoupled slab, with the lowest cut-off
frequencies and become non-dispersive for high frequencies. These modes did not reach the plane wave phase velocity
CL, but they went to the sound propagation velocity c f in a similar way. The second kind of fluid propagating modes
also shows similitude with the obtained for the isolated cavity. Finally, the third group has a behaviour between the
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plate and the fluid responses. The interaction effect between the fluid and the slab modifies the slab response until a
frequency where the fluid becomes dominant behaving as a non-dispersive waveguide.

Finally, this section examines the time domain response of the comprehensive problem produced by an impulsive
bending moment. The excitation source was modelled as a Ricker pulse with a characteristic frequency of fm =
3000 Hz, which was defined by Bf (ω) = 2ω2/ω3

m exp(−ω2/ω2
m) [12], being ωm = 2π fm. The 3D solution was

assessed as the superposition of problems with different wavenumbers in the interval −20.1 ≤ kz ≤ 20.1 rad/m. The
wavenumber sampling ∆kz = 0.157 rad/m allowed to compute the solution for a maximum distance z = π/∆kz = 20 m
from the source into a regularly spaced points with ∆z = 2π/max(kz) = 0.312 m. The time domain solution was
evaluated from an inverse Fourier transform of several harmonic problems at the frequency range from 10 Hz to
10240 Hz, with a frequency sampling of ∆ f = 10 Hz.

Figures 4 and 5 present the slab deformation and the pressure field at three time steps. Two kinds of waves can be
distinguished at t = 0.00489 s (Figure 4): a low amplitude wavefront travelling at c f followed by a slower circumfer-
ential wavefront with higher amplitude. This last mentioned wave reached the cavity bottom and was reflected toward
the surface generating a high amplitude pulse at the time t = 0.01095 s (Figure 5). Then, a new wavefront caused by
this pulse spreading along the slab with a typical cone Mach distribution.

Fig. 4: Time responses of the fluid pressure (4.0 × 10−5 Pa) and the vertical plate displacement (2.3 × 106 m) wave propagation at t = 0.00489 s.

4. Conclusions

This paper has presented a spectral based element method to study guided waves on thin-walled structures with
fluid-acoustic interaction. The method was formulated in 2.5D and it is suitable for 3D problems whose material
and geometric properties were homogeneous in one direction. Two spectral elements were proposed to represent
thin plates and acoustic cavities using Lagrange interpolation polynomials as shape functions at the Legendre-Gauss-
Lobatto points.

The wave propagation in a fluid cavity with a flexible gate was analysed. The response of the FSI system showed
several structural and acoustic propagating modes above the cut-off frequencies with different phase velocities. These
propagating modes became non-dispersive from a frequency where they propagate at the fluid sound propagation
velocity. The wave propagation exhibited a complex pattern due to the FSI effects.

6 F.J. Cruz-Muñoz et al. / Procedia Engineering 00 (2017) 000–000

Fig. 5: Time responses of the fluid pressure (4.0 × 10−5 Pa) and the vertical plate displacement (2.3 × 106 m) wave propagation at t = 0.01095 s.
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plate and the fluid responses. The interaction effect between the fluid and the slab modifies the slab response until a
frequency where the fluid becomes dominant behaving as a non-dispersive waveguide.

Finally, this section examines the time domain response of the comprehensive problem produced by an impulsive
bending moment. The excitation source was modelled as a Ricker pulse with a characteristic frequency of fm =
3000 Hz, which was defined by Bf (ω) = 2ω2/ω3

m exp(−ω2/ω2
m) [12], being ωm = 2π fm. The 3D solution was

assessed as the superposition of problems with different wavenumbers in the interval −20.1 ≤ kz ≤ 20.1 rad/m. The
wavenumber sampling ∆kz = 0.157 rad/m allowed to compute the solution for a maximum distance z = π/∆kz = 20 m
from the source into a regularly spaced points with ∆z = 2π/max(kz) = 0.312 m. The time domain solution was
evaluated from an inverse Fourier transform of several harmonic problems at the frequency range from 10 Hz to
10240 Hz, with a frequency sampling of ∆ f = 10 Hz.

Figures 4 and 5 present the slab deformation and the pressure field at three time steps. Two kinds of waves can be
distinguished at t = 0.00489 s (Figure 4): a low amplitude wavefront travelling at c f followed by a slower circumfer-
ential wavefront with higher amplitude. This last mentioned wave reached the cavity bottom and was reflected toward
the surface generating a high amplitude pulse at the time t = 0.01095 s (Figure 5). Then, a new wavefront caused by
this pulse spreading along the slab with a typical cone Mach distribution.

Fig. 4: Time responses of the fluid pressure (4.0 × 10−5 Pa) and the vertical plate displacement (2.3 × 106 m) wave propagation at t = 0.00489 s.

4. Conclusions

This paper has presented a spectral based element method to study guided waves on thin-walled structures with
fluid-acoustic interaction. The method was formulated in 2.5D and it is suitable for 3D problems whose material
and geometric properties were homogeneous in one direction. Two spectral elements were proposed to represent
thin plates and acoustic cavities using Lagrange interpolation polynomials as shape functions at the Legendre-Gauss-
Lobatto points.

The wave propagation in a fluid cavity with a flexible gate was analysed. The response of the FSI system showed
several structural and acoustic propagating modes above the cut-off frequencies with different phase velocities. These
propagating modes became non-dispersive from a frequency where they propagate at the fluid sound propagation
velocity. The wave propagation exhibited a complex pattern due to the FSI effects.
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Fig. 5: Time responses of the fluid pressure (4.0 × 10−5 Pa) and the vertical plate displacement (2.3 × 106 m) wave propagation at t = 0.01095 s.
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