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Abstract

This work presents a two-and-a-half dimensional (2.5D) spectral formulation based on the finite element

method (FEM) and the boundary element method (BEM) to study wave propagation in acoustic and elastic

waveguides. The analysis involved superposing two dimensional (2D) problems with different longitudinal

wavenumbers. A spectral finite element (SFEM) is proposed to represent waveguides in solids with arbitrary

cross-section. Moreover, the BEM is extended to its spectral formulation (SBEM) to study unbounded fluid

media and acoustic enclosures. Both approaches use Lagrange polynomials as element shape functions at

the Legendre-Gauss-Lobatto (LGL) points. The fluid and solid subdomains are coupled by applying the

appropriate boundary conditions at the limiting interface. The proposed method is verified by means of two

benchmark problems: wave propagation in an unbounded acoustic medium and the scattering of waves by an

elastic inclusion. The convergence and the computational effort are evaluated for different h− p strategies.

Numerical results show good agreement with the reference solution. Finally, the proposed method is used

to study the pressure field generated by an array of elastic fluid-filled scatterers immersed in an acoustic

medium.

Keywords: SBEM, SFEM, fluid-solid interaction, waveguide, scattered waves, two-and-a-half dimension

1. Introduction

Many engineering fields involve time harmonic wave propagation, such as fluid acoustics and solid scat-

tering. Hybrid methods based on the boundary element method (BEM) and the finite element method

(FEM) are suitable for studying solid and fluid interaction in unbounded media. Both methods have been

used in various works to predict the response of coupled fluid-structure problems. For the low frequency5

range, the standard formulation using linear elements accurately represents the fluid and solid scattering
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waves. However, at high frequencies, the solution deteriorates due to the so-called pollution effects [1, 2].

Higher-order approximations are needed to obtain accurate results.

Different approaches have been proposed in the past to overcome the pollution effect in two and three

dimensional problems [3]. The h-refinement method has proved to be useless at high wavenumbers because10

of the necessary computational effort to represent small wavelengths [4]. Many works suggest using high-

order elements to improve the convergence rate of standard formulations. The boundary and finite element

methods have thus been extended to their spectral formulations [5, 6] approximating the field variables by

high-order interpolation shape functions. Such functions are polynomials over non-uniformly spaced nodes

to avoid the Runge phenomenon.15

A number of authors have successfully applied spectral finite element methods in different fields. De-

grande and De Roeck [7] developed a high-order formulation to study the dynamic response of a porous

saturated medium using spectral elements. The authors used the analytical solution of Biot equations in two

dimensions as shape functions. Bar-Yoseph et al. [8] proposed a spectral element method to study the tran-

sient response of a simply supported Euler-Bernoulli beam subjected to external forced lateral vibrations.20

They examined two Galerkin formulations using Hermitian and Lagrangian polynomials as interpolants for

spatial and time discretisations. The space-time SFEM enabled the use of larger time steps while maintain-

ing the accuracy of the solution. Kudela et al. [13] applied a SFEM to study the wave propagation in an

isotropic rod and in a Timoshenko beam. The authors proposed this methodology to detect small damage

in structures. The computed results were compared with those obtained from a standard FEM and from25

experimental measurements. This comparison highlighted the efficiency of the spectral elements. Zhu et

al. [14] proposed the use of Chebyshev spectral elements within an implicit Newmark method to simulate

acoustic wave propagation. They found accurate results with uniform nodal element distribution and small

time steps. Recently, Romero et al. [17, 18] presented a spectral two-and-a-half dimensional (2.5D) for-

mulation of two elements to study guided waves in coupled problems involving thin-walled structures and30

fluid-acoustic enclosures. They proposed a plate element based on a Reissner-Mindlin/Kirchhoff-Love mixed

formulation to represent thin-walled structures. These authors found accurate results using an appropriate

combination of element size and order of the approximation functions.

Regarding the development of the spectral boundary element method (SBEM), Calaon et al. [9] presented

an approach to solve three dimensional (3D) elasticity problems using element shape functions generated35

from radial basis functions. They found that the exponential convergence of the solution was achievable.

Holm et al. [10] extended the hp−version of the BEM to the Helmholtz equation to study the scattering of

time harmonic acoustic waves at thin screens. Numerical experiments showed an exponential convergence

rate and an arbitrarily high algebraic for the hp solution. Hwang [11] used a spectral approach to solve

the boundary integral equation to study scattering and radiation problems. The spectral scheme presented40

orthogonal functions as basis functions to approximate the acoustic variables. Accurate results were found
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with a reduction of computational effort with respect conventional BEM. Zou and Aliabadi [12] presented a

boundary spectral element method for modelling high-frequency wave propagation in three dimensions. The

authors used three types of high-order spectral elements for boundary discretisation. The computed results

were validated against a well-stablished FEM. Milind and Mitra [15] studied time harmonic problems in45

acoustics using a Fourier-Hankel SBEM formulation. The authors compared the solution given by the SBEM

with those obtained using the FEM, and other standard BEM techniques. Furthermore, Cerrato et al. [16]

proposed a spectral coupled formulation of the BEM and the FEM to study linear water-wave propagation.

They used the SFEM to study a closed region with non-constant bathymetry, and derived a SBEM from

the mild-slope equation to study water-wave propagation over an infinite region with unidirectional variable50

bathymetry. They achieved very accurate results in comparison with the standard discrete solutions to this

problem.

In this work, we propose a two-and-a-half dimensional coupled spectral formulation based on the FEM

and the BEM to study wave propagation in fluid and solid waveguides. The proposed method is useful for

problems whose geometry and material properties are both uniform in one direction, whereas the excitation55

exhibits a three dimensional distribution. The spectral approach allows the analysis of wave propagation at

high wavenumbers, which reduces the pollution effect with low computational effort.

The outline of this work is as follows. First, the fluid-solid interaction problem is formulated in two-

and-a-half dimensions. The 2.5D formulation of the BEM and the FEM are extended to their spectral

formulations (SBEM and SFEM, respectively). The SBEM is used for the representation of both acoustic60

enclosures and unbounded domains. Moreover, a solid finite spectral element is proposed to represent elastic

waveguides with arbitrary cross-section. The proposed approach is verified with two benchmark problems:

the wave propagation in an unbounded acoustic region [16] and the scattering of waves by an elastic inclusion

[19]. An h−p convergence analysis is carried out to assess the accuracy of the method. Finally, the proposed

method is applied to study the scattered wave field in an unbounded acoustic domain due to an array of65

elastic fluid-filled cylinders.

2. Numerical model

The spectral formulations of the BEM and FEM are developed to represent an elastic waveguide sub-

merged in an unbounded acoustic region, as shown in Figure 1. The proposed methodology uses spectral

solid elements to represent the elastic waveguide (Ωs), while the limiting interface (Γ) between the solid

and the fluid (Ωf ) is modelled with spectral boundary elements. Both methods are coupled by imposing

the appropriate boundary conditions at the interface Γ: equilibrium of normal pressure and compatibility

of normal displacement must be ensured at the fluid-solid interface, with null shear stresses. The governing
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Figure 1: Domain decomposition

equations and the boundary conditions of the coupled fluid-solid system are:

∇σ + b = ω2ρsus in Ωs, with BC

∇2pf + κ2
fpf = 0 in Ωf , with BC

uTs n = uf in Γ,

(σn)
T

n + pf = 0 in Γ,

(1)

where the variables in the solid equation are the stress tensor σ, the body force vector b, the displacement

vector us, the solid density ρs and the angular frequency ω. The Helmholtz equation defines the pressure

field pf for a fluid wavenumber κf = ω/cf , where cf is the sound wave propagation velocity in the fluid70

subdomain. The coupling conditions include the fluid normal displacement to the boundary uf and the

outward solid normal at the interface Γ, n.

The 2.5D formulation is handled by defining a characteristic field for the elastic and the acoustic wave-

guides at point x = x (x, y, z) as [20, 21]:

f̂ (x, κz, ω) = f̃ (x̃, κz, ω) e−ικzz, (2)

where f̃ (x̃, κz, ω) is the frequency-wavenumber representation of an unknown variable (e.g. displacement,

force or sound pressure), x̃ = x̃ (x, y) and ι =
√
−1. The 3D solution is computed as the superposition of

2D solutions with different wavenumber κz [22]:

f (x, ω) =

∫ +∞

−∞
f̃ (x̃, κz, ω) e−ικzzdκz. (3)

The integral in Equation (3) presents poles and singularities, and the integration over the longitudinal

wavenumber becomes mathematically and numerically complicated. One simple way around these difficulties

is to replace the single-source problem, whose solution is expressed by Equation (3), with a multiple-source

problem where sources are periodically distributed along the z axis [22]. Then, Equation (3) is replaced by:
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f (x, ω) =

∫ +∞

−∞
f̃ (x̃, κz, ω) e−ικzz

∞∑
m=−∞

eικmLdκz, (4)

where L is the periodicity source interval. L needs to be large enough to avoid the response being contam-

inated by the virtual source. Then, Equation (4) reduces to:

f (x, ω) =
2π

L

∞∑
n=−∞

f̃ (x̃, κzn, ω) e−ικznzdκz. (5)

with κzn = 2π
L n, which converges and can be approximated by a finite sum of N terms as:

f (x, ω) =
2π

L

N∑
n=−N

f̃ (x̃, κzn, ω) e−ικznzdκz. (6)

2.1. Spectral boundary element method (SBEM)

Next, the SBEM is derived from the standard collocation method, which is fully covered in the literature

[23]. The main differences between the two methods concern the field variable approximation and the75

proposed element integration scheme. In both cases, the boundary integral representation is derived from

the Helmholtz equation [23], considering a homogeneous fluid domain denoted by its volume Ωf and its

boundary Γ. Although the proposed method is used to obtain the three-dimensional radiated field by an

elastic waveguide with an arbitrary cross section, the problem is computed as the superposition of 2D

problems with different wavenumber κz. Therefore, the boundary Γ is reduced to its cross section Σ at the80

coordinate plane z = 0. Thus, the integral representation of the fluid pressure for a point x̃i located at the

boundary Γ in the frequency-wavenumber domain is:

ci(x̃i)p̃i(x̃i, κz, ω) = −
∫

Σ

(
ιρω2ũi(x̃i, κz, ω)Ψ̃(x̃, κz, ω; x̃i) + p̃i(x̃i, κz, ω)

∂Ψ̃(x̃, κz, ω; x̃i)

∂n

)
dΣ, (7)

where p̃(x̃i, κz, ω) and ũ(x̃i, κz, ω) are the sound pressure and the particle normal displacement at the cross

section Σ of the boundary Γ, respectively. Ψ̃(x̃, κz, ω; x̃i) is the solution to the Helmholtz equation at point

x̃ due to a point source located at x̃i [24]:

Ψ̃(x̃, κz, ω; x̃i) = − ι
4
H

(2)
0 (kαr) , (8)

where r = ‖x̃ − x̃i‖ is the distance to the source, kα =
√
k2
f − κ2

z is the effective wavenumber and H
(2)
0 is

the zero order Hankel function of second kind. The integral-free term ci(x̃i) only depends on the boundary

geometry at the collocation point x̃i.85

The solution to this integral is found by discretisation of the boundary into N element with Σ =
⋃N
j=1 Σj :

ci(x̃i)p̃i(x̃i, κz, ω) = −
N∑
j=1

[
h̃ji (x̃, κz, ω; x̃i) p̃j(x̃j , κz, ω) + g̃ji (x̃, κz, ω; x̃i) ũj(x̃j , κz, ω)

]
, (9)
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Figure 2: Element shape functions φk for an element with order p = 6.

where g̃ji and h̃ji are the boundary element matrices resulting from integration in element Σj and collocation

at nodal point x̃i. The field variables are approximated within the element using a set of interpolation shape

functions φ(ξ) as:

p̃j(x̃j , κz, ω) =

p+1∑
k=1

φkp̃(x̃k, κz, ω) = φp̃e,

ũj(x̃j , κz, ω) =

p+1∑
k=1

φkũ(x̃k, κz, ω) = φũe.

(10)

The proposed methodology uses Lagrange polynomials of order p as interpolation shape functions given by:90

φk =
∏
j 6=i

ξ − ξi
ξj − ξi

, (11)

where nodal coordinates ξi are found at the Lobatto-Gauss-Legendre (LGL) points. The use of a family

of orthogonal polynomial (φi(ξj) = δij), such as Lagrange polynomials, as interpolation shape functions,

mitigates the appearance of the Runge phenomenon, which can result in a highly ill-conditioned problem

for high-order elements [25]. As an example, Figure 2 shows the shape functions for the element with order

p = 6 used in this work.95

Once the sound pressure and particle normal displacement are approximated within the element, the

former integrals in Equation (9) become:

g̃ji (x̃, κz, ω; x̃i) =

∫
Σj

φΨ̃ (x̃, κz, ω; x̃i) dΣ, (12)

h̃ji (x̃, κz, ω; x̃i) =

∫
Σj

φ
∂Ψ̃ (x̃, κz, ω; x̃i)

∂n
dΣ. (13)

The spatial integrations in Equations (12) and (13) are numerically evaluated using a standard Gauss-

Legendre quadrature with (p + 1) integration points whenever the collocation point does not belong to
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the integration element. However, the integrals become singular when the collocation point falls on the

integration element. Then, the element integration is numerically evaluated by element subdivision, isolating

the collocation point at the integration endpoints:∫
Σj

f̃ (x̃, κz, ω; x̃i) dΣ =

∫ 1

−1

f̃ (x̃, κz, ω; x̃i) |Jj(ξ)|dξ

=

∫ ξp

−1

f̃ (x̃, κz, ω; x̃i) |Jj(ξ)|dξ +

∫ 1

ξp

f̃ (x̃, κz, ω; x̃i) |Jj(ξ)|dξ,
(14)

with ξp being the natural coordinate of the collocation point x̃i, f̃ (x̃, κz, ω; x̃i) the kernel of integrals in

Equations (12) and (13), and |Jj(ξ)| the Jacobian of the transformation to the natural coordinate system

for element Σj . A domain transformation is used for the treatment of the singular integrals as follows [26]: z2
l = ξp − ξ , −1 ≤ ξ ≤ ξp
z2
r = ξ − ξp , ξp ≤ ξ ≤ 1

(15)

Then, integrals in Equation (14) can be rewritten as:∫
Σ

f̃ (x̃, kz, ω; x̃i) dΣ =

∫ 0

√
1+ξp

f̃ (x̃, kz, ω; x̃i) J(ξ)
dξ

dzl
dzl +

∫ √1−ξp

0

f̃ (x̃, kz, ω; x̃i) J(ξ)
dξ

dzr
dzr (16)

where dξ
dzl

and dξ
dzr

are respectively the Jacobian of the transformations obtained from Equation (15). The

application of this polynomial transformation results in a significant improvement of convergence rates [26].

A linear transformation is used in order to transform the integration interval to η ∈ [−1, 1]: zl =

√
1+ξp
2 (1 + ηl) , −1 ≤ ξ ≤ ξp

zr =

√
1−ξp
2 (1 + ηr) , ξp ≤ ξ ≤ 1

(17)

and Equation (16) becomes:∫
Σ

f̃ (x̃, kz, ω; x̃i) dΣ =

∫ 1

−1

f̃ (x̃, kz, ω; x̃i) J(ξ)
dξ

dzl

dzl
dηl

dηl +

∫ 1

−1

f̃ (x̃, kz, ω; x̃i) J(ξ)
dξ

dzr

dzr
dηr

dηr (18)

where dzl
dη and dzr

dη are the Jacobian of the linear transformations appliad by Equation (17). In this work,

the integrals in Equation (18) are numerically evaluated using a Gauss-Legendre quadrature with 10(p+ 1)

integration points. The integration scheme allowed accurate results as can be seen in the following section.100

Finally, the boundary element matrices are assembled into a single system of equations relating sound

pressure and particle normal displacement at nodal points:

H̃ (x̃, κz, ω) p̃ (x̃, κz, ω) = G̃ (x̃, κz, ω) ũ (x̃, κz, ω) , (19)

where p̃ (x̃, κz, ω) and ũ (x̃, κz, ω) collect the nodal pressure and the normal displacement to the boundary,

and H̃ (x̃, κz, ω) and G̃ (x̃, κz, ω) are the fully populated non-symmetrical boundary element system matrices.
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Equation (19) can be modified in order to consider an incident pressure field to study scattering problems

as:

H̃ (x̃, kz, ω) p̃ (x̃, kz, ω) = G̃ (x̃, kz, ω) ũn (x̃, kz, ω) + p̃I (x̃, kz, ω) , (20)

where p̃I is an arbitrary incident pressure field. Once the boundary variables are solved, the radiated wave105

field at any receiver point in the fluid domain Γf is computed through the Somigliana identity. Then, the

problem solution is defined as the superposition of the radiated wave field and the incident pressure field.

The assembled boundary element matrices require special treatment if the boundary has normal discon-

tinuities. Since the sound pressure is unique at any point on the boundary, the element assembling into the

matrix H̃ (x̃, κz, ω; x̃i) is quite straightforward. However, the normal displacement at a discontinuity is not110

unique. This possibility is taken into account considering different values according to the element normals

at this location. Nevertheless, the compatibility of normal displacements is not achieved when assembling

matrix G̃ (x̃, κz, ω; x̃i). Then, the assembled matrix has one extra column for each discontinuity point at

the boundary and the normal displacement vector also has an extra component.

2.2. Spectral finite element method (SFEM)115

The spectral finite element formulation is based on the virtual work principle in the frequency-wavenumber

domain, which states [27]:

− ω2

∫
Ωs

δûT (x, κz, ω)ρsû(x, κz, ω)dΩ +

∫
Ωs

δε̂T (x, κz, ω)σ̂(x, κz, ω)dΩ

=

∫
Ωs

δûT (x, κz, ω)ρsb̂(x, κz, ω)dΩ +

∫
Γ

δûT (x, κz, ω)q̂(x, κz, ω)dΓ,

(21)

where û(x, κz, ω) is the displacement vector, ε̂(x, κz, ω) and σ̂(x, κz, ω) are respectively the strain and

stress tensors, ρsb̂(x, κz, ω) is the body force in the domain Ωs, ρs is the solid density, and q̂(x, κz, ω) is

the surface force vector. A variable preceded by δ denotes a compatible variation of the displacement or the

strain field. Voigh notation is used to write both the symmetrical stress tensor σ̂ and the strain tensor ε̂,

σ̂ = {σ̂xx, σ̂yy, σ̂zz, σ̂xy, σ̂yz, σ̂zx}T and ε̂ = {ε̂xx, ε̂yy, ε̂zz, γ̂xy, γ̂yz, γ̂zx}T , respectively.120

The stress tensor is related to the strain tensor through the constitutive relation:

σ̂ = Cε̂, (22)

where, in the case of a linear isotropic material, the constitutive matrix C depends on the Young’s modulus
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E and the Poisson ratio ν:

C =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2ν
2 0 0

0 0 0 0 1−2ν
2 0

0 0 0 0 0 1−2ν
2


. (23)

The strain tensor can be derived from the displacement vector û as:

ε̂ = Lû, (24)

where:

L =



∂
∂x 0 0

0 ∂
∂y 0

0 0 0

∂
∂y

∂
∂x 0

0 ∂
∂z

∂
∂y

∂
∂z 0 ∂

∂x


. (25)

The dependence of the strain tensor on the longitudinal coordinate z can be removed considering the

displacement definition in the frequency-wavenumber domain according to Equation (2):

û (x, κz, ω) = ũ (x̃, κz, ω) e−ικzz. (26)

Then, Equation (24) can be rewritten as:

ε̂ = L1û + L2
∂û

∂z
= L1û− ικzL2û, (27)

where the differential operators are:

L1 =



∂
∂x 0 0

0 ∂
∂y 0

0 0 0

∂
∂y

∂
∂x 0

0 0 ∂
∂y

0 0 ∂
∂x


, L2 =



0 0 0

0 0 0

0 0 1

0 0 0

0 1 0

1 0 0


. (28)

The 2.5D formulation is derived assuming, as in the previous section, that solid material properties and

geometry are both homogeneous in the longitudinal direction. Therefore, Equation (21) is further elaborated
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by rewriting the volume integrals over the longitudinal coordinate z, and over the cross section As of the

domain integration Ωs with the coordinate plane z = 0:125

− ω2

∫ ∞
−∞

[∫
As

δũT ρsũdA

]
e−ικzzdz +

∫ ∞
−∞

[∫
As

δε̃T σ̃dA

]
e−ικzzdz

=

∫ ∞
−∞

[∫
As

δũT ρsb̃dA

]
e−ικzzdz +

∫ ∞
−∞

[∫
Σ

δũT q̃dΣ

]
e−ικzzdz,

(29)

where Σ is defined from the boundary Γ at z = 0. Then, Equation (29) must be fulfilled if:

− ω2

∫
As

δũT ρsũdA+

∫
As

δε̃T σ̃dA =

∫
As

δũT ρsb̃dA+

∫
Σ

δũT q̃dΣ. (30)

The solid subdomain is discretised into elements, where the approximated displacement vector ũ is

defined as:

ũ = ϕũe, (31)

where ϕ are the two-dimensional shape functions obtained from the one-dimensional function φ(ξ) as:

ϕk(ξ, η) = φi(ξ)φj(η) , k = (i− 1)(p+ 1) + j. (32)

Then, Equation (31) can be rewritten as:

ũ =

p+1∑
i=1

p+1∑
j=1

(
φi(ξ)φj(η)

)
ũ(ξi, ηj) =

(p+1)2∑
k=1

ϕk(ξ, η)ũk. (33)

The proposed spectral finite element is defined from local nodal coordinates (ξ, η) ∈ ([−1, 1] × [−1, 1])

at the LGL points. As an example, Figure 3 shows the natural coordinate system for an element of order

p = 6, and its related element shape function ϕ25.130

Once the element approximation is defined, the strain tensor is expressed from the nodal displacement

as:

ε̃e = L1ϕũe − ικzL2ϕũe = B1ũ
e − ικzB2ũ

e, (34)

where B1 = L1ϕ and B2 = L2ϕ.

Introducing Equations (22), (31) and (34) into Equation (30), the virtual work principle can be rewritten

for each element as:135

− ω2

∫
Ae

s

δũeTϕT ρsϕũedA+

∫
Ae

s

(
δũeTBT

1 − ικzδũ
eTBT

2

)
C (B1ũ

e − ικzB2ũ
e) dA

=

∫
Ae

s

δũeTϕT ρsb̃
e
dA+

∫
Σe

δũeTϕT q̃edΣ,

(35)
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Figure 3: (a) Element natural coordinate system and (b) element shape function ϕ25 for an element of order p = 6.

where Aes is the cross-sectional area of the three dimensional element in the z direction and Σe its boundary.

This equation is further elaborated by operating on the second integral of the left-hand side:

− ω2

∫
Ae

s

δũeTϕT ρsϕũedA+

∫
Ae

s

δũeTBT
1 CB1ũ

edA

− ικz
∫
Ae

s

δũeT
(
BT

1 CB2 + BT
2 CB1

)
ũedA− κ2

z

∫
Ae

s

δũeTBT
2 CB2ũ

edA

=

∫
Ae

s

δũeTϕT ρsb̃
e
dA+

∫
Σe

δũeTϕT q̃edΣ.

(36)

The following expression is obtained taking into account that Equation (36) must be satisfied for any

compatible displacement δũe:

[
−ω2Me + Ke

0 − ικzK
e
1 − κ2

zK
e
2

]
ũe = f̃

e
, (37)

where Me is the element mass matrix, Ke
0, Ke

1 and Ke
2 are the element stiffness matrices and f̂

e
is a vector

that collects the forces applied to the element. These matrices are defined by:

Me =

∫
Ae

s

ϕT ρsϕdA, (38)

Ke
0 =

∫
Ae

s

BT
1 CB1dA, (39)

Ke
1 =

∫
Ae

s

(
BT

1 CB2 −BT
2 CB1

)
dA, (40)

Ke
2 =

∫
Ae

s

BT
2 CB2dA, (41)
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and the external load vector f̃
e

as:

f̃
e

(x̃, κz, ω) =

∫
Ae

s

ϕT ρsb̃
e
(x̃, κz, ω)dA+

∫
Σe

ϕT q̃e(x̃, κz, ω)dΣ, (42)

which contains the contributions of both body forces and surface loads.

Then, Equation (37) can be written as:

K̃ũ = f̃, (43)

where K̃ = [−ω2M + K0 − ικzK1 − κ2
zK2] is the dynamic stiffness matrix obtained in the frequency-140

wavenumber domain from the assembled mass M matrix, and stiffness K0, K1 and K2 matrices.

The mass Me matrix and stiffness Ke
0, Ke

1 and Ke
2 matrices are numerically integrated using a LGL

quadrature of order p + 1. Therefore, the nodal element coordinates coincide with the element integration

points producing a diagonal mass Me matrix and stiffness Ke
2 matrices, that can be easily computed as

follows:

Me
kl =δklρwij |Jij | ,

Ke
2 kl =δkl

E

(1 + ν)(1− 2ν)
γmwij |Jij | ,

with i, j = 1, ..., p+ 1,

and k = 3 [(i− 1)(p+ 1) + (j − 1)] +m,

and l = 3 [(i− 1)(p+ 1) + (j − 1)] + n, m, n = 1, 2, 3,

γm =

 1−2ν
ν for m = 1, 2,

1− ν for m = 3,

(44)

where wij is the integration weight at (ξi, ηj), and |Jij | is the Jacobian evaluated at (ξi, ηj).

2.3. SBEM-SFEM coupling

Equations (19) and (43) are coupled by imposing equilibrium of forces, compatibility of normal displace-

ment and null shear stresses at the interface Γ. These equations are assembled into a single comprehensive145

system, together with the equilibrium and compatibility conditions.

The load vector f̃f at the fluid-solid interface is obtained by integrating the fluid pressure field p̃f over

the boundary Γ:

f̃f = −
∫

Γ

ϕTnφp̃fdΓ = −RT p̃f , (45)

where n is the outward normal vector at Γ, and R is the coupling fluid-solid matrix which relates force at the

solid subdomain and pressure at the boundary. Once the pressure has been integrated over the boundary,

the force vector defined by Equation (42) can be split according to the subdomain definition (Figure 1) and
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equilibrium of forces can be applied. Then, substituting Equation (45) into Equation (43) yields:K̃ss K̃sf

K̃fs K̃ff

 ũs

ũf

 =

 f̃s

−RT p̃f

 , (46)

where the subscript f indicates degrees of freedom belonging to Γ and s stands for the rest of solid degrees

of freedom.

Finally, the coupling of Equations (19) and (46) is carried out with the imposition of compatibility of

normal displacement at the boundary Γ, and null shear-stresses. Both systems of equations are assembled

into an overall system: 
K̃ss K̃sf 0

K̃fs K̃ff RT

0 −G̃NT H̃




ũs

ũf

p̃f

 =


f̃s

f̃f

0

 , (47)

where N is a matrix containing the outward normal vector n at the boundary. Equation (47) is solved for

each frequency-wavenumber step to compute the coupled fluid-solid response.150

3. Model verification

The proposed SBEM-SFEM formulation was verified with two benchmark problems on the propagation

of acoustic waves over an unbounded fluid domain [16], and the wave scattering by a cylindrical elastic

waveguide [19].

Different h− p strategies were investigated to get accurate discretisation with low computational effort.

The nodal density per wavelength is used to describe the mesh density:

dλ =
2πp

hκ∗
, (48)

where κ∗ is a characteristic wavenumber of the studied domain, h is the element length and p is the element155

order. Two different h − p convergence analyses were carried out for three different discretisation at each

case with successive p−enrichment. Starting from a coarse mesh, the elements were subdivided in order to

perform a h-refinement, and the element order was increased until numerical results converged.

3.1. Wave propagation over an unbounded acoustic medium

This section analyses the accuracy of the proposed SBEM with a benchmark problem regarding wave160

propagation in an unbounded domain. An artificial open boundary was modelled with essential bound-

ary conditions defined at x = 0 m and x = 2 m and Neumann conditions at y = 0 m and y = 1 m

(Figure 4). An incident pressure field given by p̃I = eικf d̃·x̃ was considered, with a polarised direction

d̃ = {cosπ/6, sinπ/6}T . This problem has an analytical solution for the two-dimensional Helmholtz equa-

tion that is equivalent to setting the longitudinal wavenumber at κz = 0 rad/m.165
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The problem solution was computed for a fluid wavenumber κf = 15 rad/m, assuming a sound wave

propagation velocity cf = 1500 rad/m and fluid density ρf = 1000 kg/m3. This problem was also studied

by Cerrato et al. [16] in the development of an SBEM to study water-wave propagation. The accuracy of

the proposed method was assessed through the L∞-error norm for approximating the analytical solution

given by the incident wave field. Moreover, computed results were also compared with those in Reference170

[16].

Figure 4: Wave propagation over an unbounded domain. Dirichlet (solid lines) and Neumann (dashed lines) boundary condi-

tions.

Three different meshes were investigated to study the convergence of the proposed method, resulting in

a characteristic element length given by 1/h = {3, 5, 15} m−1. The element order was successively increased

until reaching the convergence for each discretisation. The analysis was limited to quadratic and high order

elements. Constant and linear elements did not produce accurate results due to the interpolation error,175

especially in coarse meshes.

Figure 5(a) shows the L∞-error for different discretisations h and element order p. The error curves

show an exponential decay from p = 2 until the convergence was reached for an error of O(10−6). The

error decay rate was higher for finer discretisations and the solution convergence was faster than in coarser

meshes. Computed results were quite similar to those presented in Reference [16] for the error range above180

O(10−6). Cerrato et. al [16] achieved more accurate results by increasing the element order using an

analytical integration of singular kernels. However, adopting a numerical integration scheme can be useful

for the development of the SBEM due to its simplicity.

Figure 5(b) relates the L∞-error with the CPU time, finding a nearly linear rate with a slope between

-12:1 and -15:1 in the double logarithmic scale. Moreover, finer discretisations achieved lower errors for a185
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Figure 5: L∞-error representation over: (a) element order, (b) CPU time and (c) nodal density per wavelength.

given CPU time, but needed higher nodal densities per wavelength which is related to the memory usage

(Figure 5(c)). The CPU time depends on the total element integrations and the number of collocation points.

For a given mesh with nelem boundary elements and nelem(p+1) collocation points results in [nelem(p+ 1)]
2

operations, when a quadrature rule of p+ 1 points is used. We found that element integrations involved the

computation of the fundamental solution and the evaluation of the shape functions, that mainly depended on190

the element order. Then, the total CPU time was of form C(p) [nelem(p+ 1)]
2
. The computational cost had

a higher dependency on the element order approximation than on the discretisation size. This fact indicated

that a combined hp-refinement is desirable to reduce the computational effort. Problem discretisation with

nodal densities around dλ = 10 and κfh = 3 gave a good approximation, reducing the computational effort

in terms of CPU time and memory requirements.195
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Figure 6: Elastic inclusion in an unbounded acoustic region

3.2. Wave scattering by a cylindrical elastic waveguide

The proposed coupled spectral boundary and finite element method was verified from a benchmark

problem involving a cylindrical elastic waveguide in a homogeneous unbounded fluid medium. The inclusion

had a radius r = 0.6 m. The solid properties were compression wave propagation velocity cp = 2630 m/s,

shear wave propagation velocity cs = 1416 m/s, and density ρs = 2250 kg/m3, while the fluid properties200

were sound wave propagation velocity cf = 1500 m/s and density ρf = 1000 kg/m3. The proposed SFEM

represented the solid inclusion, while the SBEM was used to model the fluid domain.

The elastic inclusion was subjected to a dilatational point source located in the fluid at x̃0 = (−3.5, 0)

from the cavity centre (Figure 6). The incident wave field p̃I(x̃, κz, ω) was defined from the fundamental

solution Ψ̃(x̃, κz, ω) [24] as:

p̃I(x̃, κz, ω) = 2Ψ̃(x̃, κz, ω). (49)

The problem solution was computed for a fluid wavenumber κf = 5.236 rad/m. A constant value of

κz = 1.0 rad/m was assumed for comparison purposes. The analytical solution to this problem can be found

in Reference [19]. The numerical results were compared with the reference solution and the scaled L2-error205

ε2 was used to asses the accuracy of the proposed method.

Figure 7 represents the real part of the analytical solution of the fluid pressure around the inclusion, and

the horizontal and longitudinal solid displacements. Maximum amplitudes of the pressure are found near

the source, because of the superposition of the incident and the scattered pressure fields, and behind the

inclusion, due to the propagation of the incident wave through it. Both the pressure and the displacements210

present symmetry with respect the horizontal axis.

Three discretisations were investigated. The characteristic element sizes were 1/h = {2.12, 4.24, 8.48}m−1,

resulting in κfh = {2.47,1.23,0.62}. The element order p was set to obtain nodal densities per wavelength

dλ = {5,7.5,10,15,20}, which was limited to dλ = 20 for the finest discretisation because of the element size.

Figure 8 shows a coarse, a medium and a fine problem discretisation that ensure dλ = 20.215

Table 1 summarizes the computed scaled L2-error ε2 and the CPU time for the different h−p discretisa-

tions used in this problem. The computed results presented a good agreement with the reference solution,
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(a)

(b) (c)

Figure 7: Real part of the analytical solution for (a) total fluid pressure, (b) horizontal solid displacement and (c) longitudinal

solid displacement. kf = 5.236 rad/m and kz = 1.0 rad/m

as the error varied from ε2 ≈ 1 × 10−3 to ε2 ≈ 1 × 10−5. However, the coarsest mesh did not accurately

represent the problem solution for low element orders, since the nodal density per wavelength was not high

enough. The smallest error was found for the medium size discretisation with an acceptable computational220

time, while the finest mesh had a higher error in a lower time. On the other hand, the coarsest mesh needed

a higher computational effort to reach a similar level of error because of the higher element order approxim-

ation. Furthermore, the coarsest mesh presented an error decay up to an element order of p = 6, where the

convergence was truncated. This behaviour comes from the integration of singularities in Equations (12)

and (13). Then, the accuracy of the coupled method is limited by the accuracy of the SBEM.225

As previously commented, the CPU time in the SBEM depends on the element order and problem

discretisation. Similarly, in the case of the SFEM, the necessary number of operations to do the element

integrations was nelem(p + 1)2 for a given mesh with nelem elements. The CPU time of the SFEM was

proportional to the total number of operations depending on the element order by C ′(p). Then, the CPU
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Figure 8: Problem discretisation using (a) coarse, (b) medium, and (c) fine meshes with nodal density dλ = 20. SBEM nodes

are represented by circles and SFEM nodes by points

time can be described as C ′(p)nelem(p+1)2. Moreover, the computational cost of the SFEM was much more230

lower than the SBEM while, in comparison, the CPU time of coupling and solving the system of equations

was practically negligible. Again, a hp-refinement is more efficient in terms of error and computational effort

than a single h-refinement or p-refinement.

4. Numerical example

Finally, the capabilities of the proposed method are explored with a numerical example. The problem235

solved herein was the study of the scattered wave field by an array of elastic cylinders submerged in an

inviscid fluid medium (Figure 9). The elastic cylinders had an external radius r = 0.4 m and a thickness

t = 0.05 m. The centres of the scatterers were equally spaced s = 1.2 m. The material was assumed

to be PVC, with compression wave propagation velocity cp = 2143 m/s, shear wave propagation velocity

cs = 875 m/s, and density ρ = 1400 kg/m3. The outer fluid was water, with sound wave propagation240

velocity cf = 1500 m/s and density ρf = 1000 kg/m3. Three configurations were considered based on the

interior of the scatterers: i) water-filled; ii) air-filled, with sound propagation velocity 340 m/s and density

1.225 kg/m3; and iii) state of vacuum.

The array of scatterers was subjected to a dilatational point source located in the fluid at position

x̃0 = (−4.0, 0) (Figure 9). The incident wave field p̃I was defined as in the previous section. The problem245

response of the fluid-structure system was studied for a frequency f = 6400 Hz.

The scatterers were modelled with spectral finite elements while outer and inner fluid subdomains were

represented with the SBEM. The discretisation was chosen to enable a nodal density per wavelength of

dλ = 12 in the outer fluid, while the scatterers and the inner fluid meshes were defined to match the outer

fluid mesh. The outer fluid was modelled with 34 elements, so the cylinders and the inner fluid were modelled250
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Table 1: Summary of the number of elements, nelem, number of nodes nnode for both SBEM and SFEM, scaled L2-error

ε2 of the total fluid pressure, horizontal and longitudinal solid displacement and CPU time, computed for the different hp

discretisations.

SBEM SFEM Scaled L2 error ε2 CPU time [s]

1/h[m−1] nelem nnode nelem nnode p dλ εp2 εux
2 εuz

2

16 57 2 5 2.1362 × 10−1 2.2429 × 10−1 5.7590 × 10−2 0.526

24 121 3 7.5 1.2179 × 10−2 1.5760 × 10−2 8.0715 × 10−3 1.051

2.12 8 32 12 209 4 10 1.7836 × 10−3 2.0796 × 10−3 1.0771 × 10−3 1.713

48 457 6 15 5.7194 × 10−4 4.9001 × 10−4 1.0273 × 10−3 4.379

64 801 8 20 5.0114 × 10−4 3.9949 × 10−4 1.0014 × 10−4 11.36

32 209 2 10 3.9259 × 10−3 5.4951 × 10−3 3.9152 × 10−3 0.899

4.24 16 48 48 457 3 15 1.2872 × 10−4 3.0848 × 10−4 2.3735 × 10−4 2.018

64 801 4 20 6.0030 × 10−5 2.7535 × 10−5 7.5524 × 10−5 3.976

8.48 32 64 192 801 2 20 1.6663 × 10−4 4.2036 × 10−4 3.2369 × 10−4 2.449

Ωs

Ωf

Ωf

Γ

Γ

R

s

s

s/2

x̃0

p̃I x

y

z

Figure 9: Configuration of scatterers.
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Figure 10: Scatter discretisation with dλ = 12 and κfh = 2

again with 34 elements. The element order was set to p = 4 in all cases. This discretisation resulted in

a nodal density dλ = 12 with and κfh = 2 in the outer fluid. Figure 10 shows the discretisation of one

scatter. The longitudinal wavenumber κz was not taken into account when computing the nodal density per

wavelength.

The 3D solution was computed as the superposition of 2D problems with different longitudinal wavenum-

bers by means of Equation (6). The 3D solution can be computed in a set of regularly spaced points along

the longitudinal direction where ∆z = 2π/max {κz}. The maximum wavenumber max {κz} = 160 rad/m

was chosen to compute the solution enabling six points in a longitudinal wavelength, ∆z = 2π/max {κz} =

0.0393 m. The maximum wavenumber max {κz} should be large enough to account for the slowest waves,

namely guided waves, given by:

vf =
2πf

max {κz}
. (50)

In this case, −160 rad/m ≤ κz ≤ 160 rad/m, so it is possible to account for waves with velocity higher than255

250 m/s. The wavenumber sampling ∆κz = 0.5178 rad/m allowed to compute the solution for a maximum

distance L = π/∆κz = 6.0672 m from the source.

First, the behaviour of the cross section is analysed. Figure 11 shows the total pressure field in the outer

fluid and the scattered pressure field inside the cylinders at a vertical plane z = 0 for the three studied

cases. The total pressure fields are quite similar in the three cases. The maximum pressure was found at the260

source point and the scatterer configurations produced a shadowed zone, with a lower pressure amplitude.

The vibration of the internal surface of the cylinders caused a scattered wave field inside them in the fluid-

filled cases. When the cylinders were filled with water (Figure 9(a)), the scattered pressure field shows a

distribution in accordance with the incident field, similar wavelength, amplitude, phase and direction, as the

fluid properties were the same. The fluid-filled case (Figure 9(b)) exhibits a much more complex pattern,265
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(a) (b)

(c)

Figure 11: Real part of the pressure field at cross-section of the scatterers system at the vertical plane z = 0 for the (a)

water-filled cylinders, (b) air-filled cylinders and (c) vacuum cylinders. Sound pressure in water medium was normalised to

0.15 Pa, and to 5 × 10−5 Pa in air medium.

with lower amplitude and wavelength and any concordance with the incident field in direction or phase due
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Figure 12: Real part of the pressure field (normalised to 0.15 Pa) in an unbounded fluid by a system of water-filled elastic

scatterers.

to the difference in the properties of inner and outer fluids. The vacuum and air-filled systems presented

the best attenuation, as the water-filled system allowed the waves to propagate through the scatterers.

Figure 12 shows the 3D representation of the sound pressure at the surface of the scatterers and the total

pressure field in the fluid domain for the water-filled example. The scattered pressure field at a vertical plane270

z = 6.0672 m inside the cylinders is also shown. Only half of the model is represented for clarity’s sake,

because of problem symmetry. The pressure field had a spherical distribution centred at the source, which

was progressively decreasing as the distance to the source increased. Figure 13 shows the deformed shape

of the solid scatterers external surface and displays the normal displacement to the boundary in the colour

scale. The displacement field also had a spherical distribution centered at the source, which decreased as275

the distance from the source increased. Maximum amplitudes of both the pressure and displacement were

found at the plane z = 0, where the source was located and the incident field was higher.

This example has shown that the proposed method can be used to study the wave propagation in a

fluid-filled elastic waveguides immersed in an unbounded acoustic medium. The proposed method was able

to represent different fluid properties for the unbounded fluid and the acoustic enclosures.280
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Figure 13: Real part of normal displacement at external surface (normalised to 1.2×10−12 m) in a system of water-filled elastic

scatterers, represented over the deformed shape.
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5. Conclusions

This work has proposed a spectral element formulation based on the BEM and the FEM to study

fluid and solid wave propagation. The presented methodology looks at 3D problems whose materials and

geometric properties remain homogeneous in one direction. Solid subdomains were modelled with the SFEM,

whereas the unbounded fluid media and acoustic enclosures were represented by the SBEM. The coupling285

of both methods was carried out by imposing the appropriate boundary conditions at the interface to study

fluid-structure wave propagation.

The model was verified with two benchmark problems with analytical solutions. The SBEM was verified

with a problem involving wave propagation over an unbounded acoustic domain. The coupled SBEM-SFEM

was verified with a problem concerning a cylindrical elastic waveguide in an unbounded fluid medium.290

Numerical results show good agreement with the analytical solution. An h − p analysis shows that an

optimal solution in terms of accuracy and computational effort can be obtained through an hp-refinement.

Discretisations with a nodal density per wavelength of ten are enough to achieve reasonable accuracy. The

accuracy improves by increasing the nodal density up to twenty. To conclude, we found that medium size

discretisations gave as accurate results as coarse and fine meshes for the same nodal density per wavelenght,295

with lower computational cost.

Finally, the coupled methodology was used to study the wave field radiated by a three dimensional

fluid-filled elastic scatterers system submerged in an unbounded acoustic medium. The sound pressure field

and the scatterer’s surface displacements were studied. The proposed method made it possible to represent

different fluids for the unbounded medium and the acoustic enclosures.300
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