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aEscuela Técnica Superior de Ingenieŕıa, Universidad de Sevilla, Camino de los Descubrimientos, 41092 Sevilla, Spain
bDepartment of Civil Engineering, University of Coimbra, Pólo II, Rua Lúıs Reis Santos, 3030-788 Coimbra, Portugal

Abstract

This paper presents a novel formulation of two spectral elements to study guided waves in coupled prob-

lems involving thin-walled structures and fluid-acoustic enclosures. The aim of the proposed work is the

development of a new efficient computational method to study problems where geometry and properties are

invariant in one direction, commonly found in the analysis of guided waves. This assumption allows using a

two-and-a-half dimensional (2.5D) spectral formulation in the wavenumber-frequency domain. The novelty

of the proposed work is the formulation of spectral plate and fluid elements with an arbitrary order in 2.5D.

A plate element based on a Reissner-Mindlin/Kirchhoff-Love mixed formulation is proposed to represent

the thin-walled structure. This element uses C0 approximation functions to overcome the difficulties to

formulate elements with an arbitrary order from C1 functions. The proposed element uses a substitute

transverse shear strain field to avoid shear locking effects. Three benchmark problems are studied to check

the convergence and the computational effort for different h − p strategies. Accurate results are found

with an appropriate combination of element size and order of the approximation functions allowing at least

six nodes per wavelength. The effectiveness of the proposed elements is demonstrated studying the wave

propagation in a water duct with a flexible side and an acoustic cavity coupled to a Helmholtz resonator.

Keywords: Fluid waveguide, solid waveguide, two-and-a-half dimension, spectral element method,

acoustic, shear locking

1. Introduction

Time-harmonic wave propagation is a fundamental subject related to many engineering applications

such as fluid acoustics, scattering in solids, electromagnetic fields, etc. The propagation of acoustic waves

triggered by static and moving pressure sources, the vibration assessment and the acoustic insulation all

involve fluid-solid interaction and it should be considered rigorously. The wave propagation in waveguides

has been thoroughly analysed using either analytic or numerical methods.
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There is a large number of works about the characterization of acoustic and elastic waveguides based on

analytical methods. Among others, Pagneux et al. [1] studied the wave propagation in acoustic waveguides

with variable cross-section using a multimodal decomposition methodology. This approach considered im-

plicitly the radiation condition for an infinite length medium. Later, Pagneux and Maurel [2] formulated

a multimodal approach to represent Lamb wave propagation in elastic waveguides. Lawrie [3] presented a

hybrid method for the solution of rectangular ducts with flexible walls. The author defined some analytic

expressions for the characteristic equations and natural waveforms corresponding to acoustic modes prop-

agation in the frequency range from 0 to 1500 Hz. Athanassoulis et al. [4] used a consistent coupled-mode

method and the finite element method (FEM) in problems related to underwater acoustic waveguides. They

compared their results for low-frequency sources with the coupled-mode method. The computed results

from the three methods were in good agreement except at frequencies close to resonances of the system.

Recently, Maurel et al. [5] proposed an improved version of the multimodal method in acoustic waveguides.

The introduction of a boundary mode in the multimodal method improved significantly the efficiency and

the accuracy of the methodology.

The numerical analysis of waveguides is advantageous in the representation of arbitrary cross-section

geometries and avoiding the complexity of coupling analytically fluid and solid subdomains. Nevertheless,

the previous analytical or hybrid methods easily account for the radiation condition in waveguides, which

is a much more difficult task in numerical methods such as finite or boundary element (BEM) formulations.

Moreover, the computational effort in numerical methods is quite higher than in analytical procedures. The

numerical analysis of waveguides becomes much simpler if the medium is invariant in one direction. Such a

situation is referred to as a two-and-a-half dimensional (2.5D) problem [6]. The 2.5D formulation is based

on the Fourier decomposition of the three-dimensional (3D) problem into two dimensional (2D) problems

with different wavenumbers. Gravrić [7] developed a 2.5D thin-shell finite element for studying thin-walled

waveguides. Later, Gravrić [8] analysed the wave propagation in a free rail using 2.5D solid finite elements.

Mencik and Ichchou [9] presented a finite element formulation for the representation of wave propagation

in a fluid-filled guided structure. Nilsson and Finnveden [10] proposed a waveguide finite element to study

fluid-filled ducts and pipes. Romero et al. [11, 12] and Tadeu et al. [13] presented a coupled finite-boundary

element formulation in 2.5D to study noise and vibration in tunnels.

Although the FEM has been used in several works to represent accurately the fluid and solid scattering

waves for the low-frequency range, at higher frequencies this method could not provide reliable results due to

so-called pollution effects [14, 15]. The accuracy of the numerical solution deteriorates as the wavenumber

increases and the commonly employed rule of a certain number of elements per wavelength [16] is not

sufficient. Ihlenburg and Babuška [17, 18] demonstrated that the pollution effect of the FEM to study

acoustic problems is related to the stability of the Helmholtz differential operator at high wavenumbers.

The h−FEM methodology has proven to be useless at high frequencies due to the high computational effort
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necessary to represent small wavelengths [19]. Many works suggest the use of high-order elements (p−FEM)

to improve the convergence rate of the h−FEM. In this case, higher order element shape functions are

used to obtain results with reasonable accuracy. Deraemaeker et al. [20] studied several finite element

methodologies for solving the Helmholtz equation. They concluded that the p−FEM drastically reduces

the pollution error. Belibassakis et al. [21] presented a model based on a modal expansion for studying

harmonic wave propagation and scattering problems in inhomogeneous layered waveguides governed by the

Helmholtz equation. h− and p−FEM were applied for the solution of both the local vertical eigenvalue

problem and the resulting coupled mode system, exhibiting robustness and good rates of convergence.

Alternatively, spectral element methodologies (SEM) have been developed [22, 23]. In these methodolo-

gies, the field variables are represented by high-order interpolation shape functions usually defined at the

Legendre-Gauss-Lobatto (LGL) integration points. Vos et al. [24] presented an efficient implementation of

a spectral/h − p element method for problems with smooth and non-smooth solutions. They analysed the

specific combination of mesh size and polynomial order to minimise the computational cost. Mehdizadeh

and Paraschivoiu [25] compared a SEM and a second-order FEM. These authors concluded that the two-

dimensional SEM leads to a fewer number of elements per wavelength and less computational cost in terms of

both, memory and computational time, for the same accuracy. Petersen et al. [26] and Biermann et al. [27]

studied several shape function families for acoustic simulations. They concluded that the SEM is an efficient

method even at the high-frequency range for solving the Helmholtz equation. Recently, Christodoulou et al.

[28] presented a spectral element to study the solution of the 2D Helmholtz equation. They solved problems

involving evanescent waves and high wavenumbers, concluding that the SEM provided accurate results.

This paper proposes a new 2.5D plate element to represent waveguides. As regards to the formulation

of this element with infinite length, there are some analytical and numerical models for plate analysis to be

cited. However, it should be indicated that the following works address the behaviour of plates with finite

dimensions.

In 60’s and 70’s several pioneering analytical models [29, 30, 31, 32] were developed. These models

were based on the extension of the known Kantorovich’s method [33] for the analysis of slab structures.

The use of this technique for the analysis of plates under Kirchoff-Love’s theory is due to Cheung [34] who

denominated the methodology finite strip method. This method was extended to Reissner-Mindlin theory

for thick slabs [32]. The treatment of the shear locking has been deeply studied in many researches. Hughes

and Franca [35] demonstrated that the convergence of plate formulations based on Reissner-Mindlin theory

applied to thin slabs is achieved for any element formulated by interpolation functions with enough order.

Then, techniques like reduced or selective integration, discrete Kirchhoff conditions, or special transverse

shear strain interpolation are not required. The number of papers published during the last years shows the

increasing interest in this topic [36, 37, 38, 39, 40].

Among others, the following high-order formulations have been recently developed to represent plate
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structure behaviour. Zrahia and Bar-Yoseph [41] proposed a Reissner-Mindlin plate spectral element for

a rectangular geometry. The authors concluded that the shear locking phenomenon for slender plates is

eliminated by the use of high-order shape functions which is in agreement with Reference [35]. Chakraborty

and Gopalakrishnan [42] presented a spectral thin plate element to study wave propagation in an anisotropic

material. This element was used to analyse a plate with ply drops and to represent the Lamb waves.

Birgersson et al. [43] derived the equation of motion for a rectangular plate strip to represent a spectral

superelement plate as built up from a number of such strips. Zak [44] developed a spectral plate element

based on Chebyshev polynomials of the first kind to study symmetric and anti-symmetric modes of the Lamb

waves. The high-order polynomials used for the approximation of all in-plane displacements avoided the

shear locking phenomena. Brito and Sprague [45] proposed a spectral element based on the Reissner-Mindlin

formulation with mixed reduced quadrature getting a shear locking free element. Sprague and Purkayastha

[46] proposed a Legendre spectral element for composite plates based on the Reissner-Mindlin theory. They

also found the Legendre spectral element was shear-locking free using a nodal quadrature.

This paper presents a novel 2.5D approach based on the SEM to study wave propagation problems with

invariant cross-section acting as waveguides including the fluid-structure interaction (FSI). The structure is

modelled as a thin-walled waveguide using a plate element based on the Kirchhoff-Love and the Reissner-

Mindlin formulations. The shear effect of dispersive waves with short wavelengths propagating along the

longitudinal direction is neglected due to the infinite length of the plate. The small rotation approach is

considered for the analysis of plates rather than a more general element able to represent moderate or large

rotations [47]. The plate element variables are all kinematic: displacements and independent rotations. As

only C0 continuity is required, isoparametric elements may be employed, which results in several advantages

[35] in relation to the 2.5D thin plate elements proposed by Gavrić [7]. However, the infinite length in

one direction makes the element to be sensitive to shear locking even using a high-order formulation. The

proposed plate element formulation employs a stabilised auxiliary shear strain field instead of reduced or

selective integration procedures to avoid this effect[48, 49, 50]. The fluid spectral element is derived from

the 2.5D FEM based on the Helmholtz equation [11].

The outline of this paper is as follows. First, the numerical model consisting of the spectral element

formulations to represent FSI waveguides is developed. The stabilised spectral element for thin-walled

guides, the spectral fluid-acoustic element and the coupling procedure are presented in detail. Later, the

proposed methodology is verified from three benchmark problems. Finally, the coupled formulation is used

to study the wave propagation in an acoustic waveguide with a flexible wall [51, 52] and an acoustic cavity

coupled to a Helmholtz resonator [53]. The basis of the proposed method and a brief analysis of a thin-walled

waveguided interaction with a fluid duct were presented at EURODYN2017 conference [54].
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2. Numerical model

The numerical model is based on a 2.5D spectral element formulation for structure (Ωs) and fluid (Ωf )

subdomains (Figure 1). The structural behaviour is governed by the equilibrium equation for a continuum

solid and the fluid by the Helmholtz acoustic wave equation, accounting for Neumann and Dirichlet bound-

ary conditions (BC). The coupling between both formulations is done by imposing appropriate boundary

conditions at the fluid-structure interface Γq. Equilibrium of normal pressure, compatibility of normal dis-

placement and null shear stresses are imposed at the interface Γq. The governing equations and the boundary

conditions can be written as follows:

∇ · σ + b = ω2ρsus in Ωs , with BC

∇2p+ k2
fp = 0 in Ωf , with BC

uTs nqs = uTf nqf in Γq

(σnqs)
T

nqs + p = 0 in Γq

(1)

where the variables in the solid equation are the stress tensor σ, the body force vector b, the displacement

vector us, the solid density ρs and the angular frequency ω. The Helmholtz equation defines the pressure

field p for a fluid wavenumber kf = ω/cf , where cf is the sound wave propagation velocity. Moreover, the

coupling conditions include the fluid particle displacements uf and the outward solid and fluid normals at

the interface Γq, nqs and nqf (with nqs = −nqf ), respectively.

Ωf

Ωs

Γq

x

y

z

Γs

Γf

nqs

nqf

Figure 1: Fluid-structure subdomains.

The 2.5D formulation is addressed defining a characteristic field for the elastic and the acoustic waveg-
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uides at point x = x(x, y, z) as [7, 8]:

f̂(x, kz, ω) = f̃(x̃, kz, ω)e−ikzz (2)

where f̂(x, kz, ω) is the frequency-wavenumber representation of an unknown variable (e.g. displacement,

force or pressure), x̃ = x(x, y) and i =
√
−1. The 3D solution is computed as the superposition of 2D

solutions with different wavenumber kz:

f(x, ω) =

∫ +∞

−∞
f̃(x̃, kz, ω)e−ikzz dkz (3)

Table 1 summarises the notation used in the following sections. The spatial representation and the

frequency-wavenumber dependence is implicitly considered for simplicity in the notation.

Table 1: List of symbols

x = x(x, y, z) Spatial representation in 3D

x̃ = x(x, y) Spatial representation in 2.5D

f = f(x, ω) Frequency representation

f̂ = f̂(x, kz, ω) = f̃(x̃, kz, ω)e−ikzz Frequency-wavenumber representation

�s Structure variable

�f Fluid variable

�χ Bending variable

�γ Shear variable

�e Elemental variable

�i Nodal variable

2.1. The 2.5D stabilised plate spectral element

This section presents a stabilised spectral element based on a Reissner-Mindlin/ Kirchhoff-Love mixed

formulation. The plate is defined by the subdomain Ωs, the boundary Γs and the thickness t (Figure 2).

The plate dimensions are W ×L. Both, the cross section and the material properties remain invariant along

the z axis.

The displacement field is denoted by the transverse displacement uy and the rotations θx and θz at the

plate mid-surface:

us = [uy, θx, θz]
T

(4)
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x

y

z

t

W

L

Ωs

Γs

ux

uy

uz

θxθz

Figure 2: Plate representation.

Plate displacements of any point are approximated as [55]:

ux = −yθx = −y
(
∂uy
∂x

+ φx

)
(5)

uy = uy (6)

uz = −yθz = −y
(
∂uy
∂z

+ φz

)
(7)

where φx and φz are the rotations of the mid-surface normal due to the shear deformation.

The 2.5D formulation assumes uniformity of the geometry along the z axis. Therefore, the plate di-

mension L leads to an infinite length [7]. This consideration implies that the slenderness ratio L/t goes to

infinity. Then, the structure behaves as a thin plate neglecting the contribution of shear deformation φz to

the longitudinal displacement uz.

With this thin-plate assumption, Equations (5-7) can be written in the frequency-wavenumber domain

as follows:

ûx = −yθ̂x (8)

ûy = ûy (9)

ûz = yikzûy (10)

It can be seen from Equations (8-10) that the plate displacements are defined by two degrees of freedom,

with ûs =
[
ûy, θ̂x

]T
, according to a Reissner-Mindlin/Kirchhoff-Love mixed formulation.

Voigt notation is used to express the small strain tensor as:

ε̂ = [ε̂x, ε̂y, ε̂z, γ̂xy, γ̂xz, γ̂yz]
T

=

[
∂ûx
∂x

,
∂ûy
∂y

,
∂ûz
∂z

,
∂ûx
∂y

+
∂ûy
∂x

,
∂ûx
∂z

+
∂ûz
∂x

,
∂ûy
∂z

+
∂ûz
∂y

]T (11)
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The strain ε̂y is null since it is considered that the vertical displacement ûy is constant throughout the plate

thickness. Also, the shear strain γ̂yz is null due to the thin plate behaviour considered along the z direction.

Then, according to Equations (8-11) and omitting ε̂y and γ̂yz, the strain tensor becomes:

ε̂ =


ε̂x

ε̂z

γ̂xz

γ̂xy

 =


−y∂θ̂x/∂x

yk2
z ûy

−θ̂x + ∂ûy/∂x

y
(
ikz θ̂x + ikz∂ûy/∂x

)

 =

 χ̂

γ̂

 (12)

which can be separated in bending χ̂ and transverse shear γ̂ contributions.

A linear isotropic material law defines the stress-strain relation:

σ̂ = Cε̂ (13)

where the constitutive matrix C is given by:

C =

 Cχ 0

0 Cγ

 with Cχ =
Et3

12(1− ν2)


1 ν 0

ν 1 0

0 0
1− ν

2

 , Cγ = κGt (14)

E being the Young’s modulus, G the shear modulus, ν the Poisson’s ratio, κ = 5/6 the shear correction

factor for a slab with constant thickness, and Cχ and Cγ are the constitutive matrices for bending and shear

components.

The proposed spectral element formulation is addressed from the virtual work principle for 2D problems

with different wavenumber kz, which states [7]:

− ω2

∫
Ωs

δûsρsûs dΩ +

∫
Ωs

δε̂σ̂ dΩ =

∫
Ωs

δûsρsb̂ dΩ +

∫
Γs

δûst̂ dΓ (15)

where ρsb̂ is the body force and t̂ is the traction at the boundary Γs. A variable preceded by δ denotes a

compatible variation of the displacement or strain field.

Equation (15) implicitly considers the dependence along the longitudinal coordinate z on e−ikzz. As-

suming an invariant longitudinal geometry, Equation (15) must be fulfilled if:

− ω2

∫
As

δũsρsũs dA+

∫
As

δε̃σ̃ dA =

∫
As

δũsρsb̃ dA+

∫
Σs

δũst̃ dΣ (16)

where As and Σs are the cross section of Ωs and its boundary line, respectively.

The mid-surface of the plate is discretised into nel elements with shape functions of order p (p+1 nodes),

each one with cross section Aes and boundary Σes. The approximated displacement field for an element is

defined by its nodal values ũe,is and the shape functions φi as:

p+1∑
i=1

φiũe,is = φũes (17)
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Then, the element strain tensor can be defined by Equation (12) as:

χ̃e =

p+1∑
i=1


−yθ̃e,ix ∂φi/∂x

yk2
zφ

iũe,iy

y
(
ikzφ

iθ̃e,ix + ikzũ
e,i
y ∂φi/∂x

)
 =

p+1∑
i=1

[
Bi
χ0 + ikzB

i
χ1 + k2

zB
i
χ2

]
ũe,is =

p+1∑
i=1

[
B̃
i

χ

]
ũe,is = B̃

e

χũes

(18)

γ̃e =

p+1∑
i=1

(
−φiθ̃e,ix + ũe,iy ∂φi/∂x

)
=

p+1∑
i=1

[
Bi
γ0

]
ũe,is = Be

γ0ũ
e
s (19)

The frequency-wavenumber matrix relating bending strain and displacement is defined as B̃
e

χ. From Equa-

tion (19) it is deduced that the transverse shear contribution does not depend on the longitudinal wavenum-

ber, kz, according with the assumption of thin plate behaviour in that direction. The total element strain

is given by ε̃e = χ̃e + γ̃e =
∑p+1
i=1 B̃

i
ũe,is = B̃

e
ũes, with B̃

i
= B̃

i

χ + Bi
γ0.

Then, substituting Equations (17-19) into Equation (16), the virtual work principle expression for an

element yields:

− ω2

∫
Aes

δũe
T

s φ
T ρsφũes dA+

∫
Aes

δũe
T

s B̃
eT

CB̃
e
ũes dA =

∫
Aes

δũe
T

s φ
T ρsb̃

e
dA+

∫
Σes

δũe
T

s φ
T t̃

e
dΣ (20)

The integral involving the internal work in Equation (20) becomes:∫
Aes

δũe
T

s B̃
eT

CB̃
e
ũes dA

=

∫
Aes

δũe
T

s

[
BeT

χ0CχBe
χ0

]
ũes dA

+

∫
Aes

δũe
T

s

[
BeT

γ0CγB
e
γ0

]
ũes dA

+ ikz

∫
Aes

δũe
T

s

[
BeT

χ0CχBe
χ1 + BeT

χ1CχBe
χ0

]
ũes dA

+ k2
z

∫
Aes

δũe
T

s

[
BeT

χ0CχBe
χ2 −BeT

χ1CχBe
χ1 + BeT

χ2CχBe
χ0

]
ũes dA

+ ik3
z

∫
Aes

δũe
T

s

[
BeT

χ1CχBe
χ2 + BeT

χ2CχBe
χ1

]
ũes dA

+ k4
z

∫
Aes

δũe
T

s

[
BeT

χ2CχBe
χ2

]
ũes dA

(21)

Then, Equation (20) is written as follows eliminating the displacement vector δũes:[
−ω2Me + Ke

χ0 + Ke
γ0 + ikzK

e
χ1 + k2

zK
e
χ2 + ik3

zK
e
χ3 + k4

zK
e
χ4

]
ũe = f̃

e
(22)

where Me is the element mass matrix, Ke
χ0, Ke

γ0, Ke
χ1, Ke

χ2, Ke
χ3, and Ke

χ4 are the stiffness element matrices

and f̃
e

is a vector that collects the forces applied in the element. These matrices are defined according to

Equation 21.

9



Once the subdomain As is discretised into nel elements, Equation (16) can be written as:

K̃ũs = f̃ (23)

where K̃ = −ω2M + Kχ0 + Kγ0 + ikzKχ1 + k2
zKχ2 + ik3

zKχ3 + k4
zKχ4 is the equivalent dynamic stiffness

matrix, being Kχ0, Kγ0, Kχ1, Kχ2, Kχ3, and Kχ4 the assembled global stiffness matrices, and M is the

assembled global mass matrix.

This work uses LGL polynomials of order p as shape functions for both geometry and displacement

approximations. Nodes in the natural coordinate ξ ∈ [−1, 1] are at the LGL points, which are the zeros of

the following expression:

(1− ξ2)
∂φ

∂ξ
= 0 (24)

The shape interpolation functions for a plate element of order p are computed from the Lagrange polynomials

on the LGL integration points given by Equation (24):

φi =

p+1∏
j=1
j 6=i

ξ − ξi
ξj − ξi

(25)

Shape function φi and its derivatives are symbolically computed for any arbitrary element order. Figure 3

shows the shape interpolation functions for a spectral element with order p = 6.

-1 -0.5 0 0.5 1

ξ

-0.2

0

0.2

0.4

0.6

0.8

1

φ

φ1

φ2

φ3

φ4

φ5

φ6

φ7

Figure 3: Element shape functions φi for a plate spectral element with order p = 6. Nodal coordinates are marked by circles.

The formulation presented in this work exhibits shear locking for high slenderness ratios W/t when the

element stiffness shear matrix Ke
γ0 is computed according to Equation (21). Next, a shear locking free 2.5D

plate spectral element is developed using a stabilisation of the stiffness shear matrix.

The stabilisation is based on fulfilling the condition that transverse shear strain must be zero for the

limiting thin-plate behavior [48, 49, 50]. Then, the proposed element uses a shear strain field γ̃e
′

xy to compute

the shear deformation term in Equation (19). The transverse shear strain element field γ̃exy is approximated
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by independent interpolation shape functions φ′ and the shear strain γ̃e,i
′

xy at p internal points within the

element:

γ̃exy =

p∑
i=1

φi
′
γ̃e,i

′

xy (26)

For the sake of clarity, Figure 4 shows the interpolation shape functions φ and φ′ for an element with order

p = 2 in natural coordinates. The auxiliary internal points ξ′ are found at the Gauss-Legendre points, while

the element nodes remain at the Legendre-Gauss-Lobatto (LGL) points. The interpolation shape functions

φ′ are one order lower than the functions φ. The use of φ′ as interpolation shape functions leads to the

fulfilment of zero transverse shear strain at ξ′ for thin-plate, which yields to a shear-locking free formulation.

ξ1 ξ1
′

ξ2 ξ2
′

ξ3

0.5

1

φ1

φ2

φ3

φ1
′

φ2
′

Figure 4: Shape functions for a spectral element p = 2. Element nodes (circles) and internal points for shear strain γ̃xy

(crosses).

Equation (26) is rewritten using the auxiliary field γ̃′xy expressed in the natural coordinate, γ̃′ξ:

γ̃exy = J−1
p∑
i=1

φi
′
γ̃e,i

′

ξ = J−1γ̃e
′

ξ (27)

where J is the Jacobian matrix that entails the correspondence between the shear strain in the physical

coordinate system, γ̃xy, and its representation in the natural coordinate system, γ̃ξ.

The shear strain field γ̃e
′

ξ in Equation (27) is represented by a (p− 1) order polynomial:

γ̃e
′

ξ = a0 + a1ξ + a2ξ
2 + · · ·+ ap−1ξ

p−1 = ξa (28)

where a is a vector that collects the polynomial coefficients a0, a1, a2, . . . , ap−1. These coefficients are

obtained from the solution of a linear system of p equations from the evaluation of Equation (28) at the

internal points ξ′: 
γ̃e

′

ξ (ξ′1)

γ̃e
′

ξ (ξ′2)
...

γ̃e
′

ξ (ξ′p)

 =


1 ξ′1 ξ2

1
′
. . . ξp−1

1

′

1 ξ′2 ξ2
2
′
. . . ξp−1

2

′

...
. . .

1 ξ′p ξ2
p
′
. . . ξp−1

p
′




a0

a1

...

ap−1

 = Pa (29)
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The polynomial coefficients can be obtained from the strain γ̃e
′

ξ using a similar approximation to those

defined by Equation (19) but in natural coordinates:

a = P−1γ̃e
′

ξ = P−1
p+1∑
i=1

Bi
γ0(ξ′i)ũ

e,i
s (30)

Finally, substituting Equations (28) and (30) into Equation (27) yields:

γ̃exy = J−1ξP−1
p+1∑
i=1

Bi
γ0(ξ′)ũe,is =

p+1∑
i=1

[
Bi′

γ0

]
ũe,is = Be′

γ0ũ
e
s (31)

where Be′

γ0 is the substitute transverse shear strain matrix used to computed the stiffness matrix Ke
γ0:

Ke
γ0 =

∫
Aes

[
Bγ0

e′TCγB
e′

γ0

]
dA (32)

The proposed stabilisation method is quite straightforward and it is only required the computation of the

substitutive matrix Be′

γ0. This procedure results in a free shear locking plate element based on the Reissner-

Mindlin and the Kirchhoff-Love formulations.

The nodal element coordinates define an orthogonal basis. Then, the element matrices Me and Ke
χ4 are

easily computed as follows:

Me(k, l) = δijρstwi|J(ξi)| , (33)

Me(k, l + 1) = δij
ρst

3

12
wi|J(ξi)| , (34)

Ke
χ4(k, l) = δij

Et3

12(1− ν2)
wi|J(ξi)| , (35)

with k = 2(i− 1) + 1 , l = 2(j − 1) + 1

and i, j = 1, . . . , p+ 1

where δij is the Kronecker delta, wi is the LGL weight at the natural nodal coordinate ξi and |J(ξi)| is the

Jacobian evaluated at ξi.

The element stiffness matrices Ke
χ0, Ke

χ2 and Ke
γ0 are numerically integrated with a LGL quadrature

of the same order than the element approximation p. Moreover, it can be easily proved that the stiffness

matrices Ke
χ1 and Ke

χ3 are identically null.

2.2. The 2.5D spectral element method in fluid-acoustics

The wave propagation within an inviscid fluid is expressed by the homogeneous Helmholtz equation [56].

The 2.5D governing equation in fluid acoustics is derived from the 3D formulation assuming that the fluid

subdomain is invariant in the longitudinal direction [11]. The solution to the 3D problem can be written
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as the superposition of 2D solutions with different longitudinal wavenumbers kz taking into account the

Fourier decomposition defined by Equation (3):

∇2
(
p̃e−ikzz

)
+ k2

f p̃e
−ikzz = 0 (36)

where kf = ω/cf is the fluid wavenumber and p̃ is the fluid pressure in the frequency-wavenumber domain.

The finite element equation is derived from a consistent field of pressure δp̃ acting over the subdomain Ωf :

∫
Ωf

δp̃∇2
(
p̃e−ikzz

)
dΩ + k2

f

∫
Ωf

δp̃ p̃e−ikzz dΩ = 0 (37)

The fluid weak formulation is addressed applying the Green’s theorem to Equation (37) and using the fluid

momentum equation relating the pressure and the displacement particle, ũf , at the fluid boundary Γf :

∇p̃ = −ω2ρf ũf . The virtual work expression defined by Equation (37) yields:

− k2
f

∫
Ωf

δp̃ p̃e−ikzz dΩ +

∫
Ωf

∇(δp̃)T∇
(
p̃e−ikzz

)
dΩ + ω2ρf

∫
Γf

δp̃nTf ũfe
−ikzz dΓ

−
∫

Γf

δp̃ p̃∇
(
e−ikzz

)T
nf dΓ = 0

(38)

where nf is the outward normal vector at the fluid boundary Γf .

The last term of the left-hand member in Equation (38) is computed by making use again of the Green’s

theorem:

∫
Γf

δp̃ p̃∇
(
e−ikzz

)T
nf dΓ =

∫
Ωf

δp̃ p̃∇2
(
e−ikzz

)
dΩ +

∫
Ωf

∇ (δp̃ p̃)
T ∇

(
e−ikzz

)
dΩ =

− k2
z

∫
Ωf

δp̃ p̃e−ikzz dΩ +

∫
Ωf

(δp̃∇(p̃) + p̃∇ (δp̃))
T ∇

(
e−ikzz

)
dΩ

(39)

Then, substituting Equation (39) into Equation (38):

− k̃2
f

∫
Ωf

δp̃ p̃e−ikzz dΩ +

∫
Ωf

∇(δp̃)T∇
(
p̃e−ikzz

)
dΩ + ω2ρf

∫
Γf

δp̃nTf ũfe
−ikzz dΓ

−
∫

Ωf

(δp̃∇(p̃) + p̃∇(δp̃))
T ∇

(
e−ikzz

)
dΩ = 0

(40)

where k̃f =
√
k2
f − k2

z .

From the two directional vectors, v1 = [1 1 0]
T

and v2 = [0 0 1]
T

, and expanding the gradient of

products, Equation (40) can be written as:

− k̃2
f

∫
Ωf

δp̃ p̃e−ikzz dΩ +

∫
Ωf

∇v1
(δp̃)T

(
∇v1

(p̃)e−ikzz + p̃∇v2
(e−ikzz

)
) dΩ

+ ω2ρf

∫
Γf

δp̃nTf ũfe
−ikzz dΓ−

∫
Ωf

(δp̃∇v1(p̃) + p̃∇v1(δp̃))
T ∇v2(e−ikzz) dΩ = 0

(41)
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Equation (41) can be simplified considering that the cross product of directional derivatives defined by the

operators ∇v1
and ∇v2

vanishes due to the orthogonality of the vectors v1 and v2:

− k̃2
f

∫
Ωf

δp̃ p̃e−ikzz dΩ +

∫
Ωf

∇v1
(δp̃)T∇v1

(p̃)e−ikzz dΩ + ω2ρf

∫
Γf

δp̃nTf ũfe
−ikzz dΓ = 0 (42)

Equation (42) is expressed in a simpler form assuming invariant longitudinal geometry:

− k̃2
f

∫
Af

δp̃ p̃ dA+

∫
Af

∇v1
(δp̃)T∇v1

(p̃) dA+ ω2ρf

∫
Σf

δp̃nTf ũf dΣ = 0 (43)

where Af is the cross section of the fluid subdomain and Σf is the boundary of this section.

The fluid subdomain is discretised into elements of order p. The pressure and the displacement particle

vector within an element are approximated using the element shape functions N and φ, respectively as:

p+1∑
i=1

p+1∑
j=1

Nij p̃ij = Nep̃e (44)

p+1∑
i=1

φiũif = φũef (45)

Thus, Equation (43) for an element is rewritten as follows:

− k̃2
f

∫
Aef

δp̃eNeTNep̃e dA+

∫
Aef

δp̃e (∇v1
Ne)

T
(∇v1

Ne) p̃e dA+ ω2ρf

∫
Σef

δp̃eNeTne
T

f φũef dΣ = 0 (46)

Then, the 2.5D fluid governing equation is addressed through elimination of the pressure δp̃. The following

expression is obtained defining matrices De, Fe and Re:[
−k̃2

fD
e + Fe

]
p̃e = −ω2ρfR

eũef (47)

Finally, Equation (47) is evaluated for elements in the fluid subdomain and Equation (43) can be rewritten

considering assembled global matrices D, F and R:

F̃p̃ = −ω2ρfRũf (48)

where the fluid dynamic matrix F̃ = −k̃2
fD + F is computed for each wavenumber.

The computation of matrix F̃ requires the discretisation of the integration region Af into elements. LGL

polynomials of order p are used in the proposed method as shape functions N for both geometry and pressure

approximations. The nodes in natural coordinates (ξ, η) ∈ [−1, 1]× [−1, 1] are at the LGL points:
(1− ξ2)

∂N(ξ, η)

∂ξ
= 0

(1− η2)
∂N(ξ, η)

∂η
= 0

(49)
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The nodal element coordinates define an orthogonal basis as they coincide with the LGL integration points.

Then, the fluid element matrices are easily computed as follows:

De(i, j) = δijwij |J(ξi, ηj)| , (50)

Re(i, k) = δijn
e
f (l)w′i|J

′(ξi)| , (51)

with i, j = 1, . . . , p+ 1

and k = 2(i− 1) + l , l = 1, 2

In Equation (50), δij is the Kronecker delta, wij is the LGL weight at the natural nodal coordinates (ξi, ηj)

and |J(ξi, ηj)| is the Jacobian evaluated at (ξi, ηj). Equation (51) is only defined for nodes belonging to Γf

with Neumann boundary conditions. Here, w′i is the LGL weight at the nodal coordinate ξi, |J′(ξi)| is the

Jacobian computed from the shape function φi and the boundary geometry, and nef (l) is the l-th component

of the outward normal vector to Aef . The element fluid matrix Fe is numerically integrated with a LGL

quadrature of order p.

The fluid subdomain Ωf is discretised into elements with one degree of freedom per node, representing

pressure. The element definition is done by using a polynomial interpolation L defined from an element base

mesh x with n points and its representation in the natural coordinate system. The element nodal coordinates

are obtained as xi =
∑n
k=1 Lk(ξi, ηi)xk. As an example, Figure 5 shows a p = 6 element generated from a

base mesh with n = 9 points for the approximation of the element geometry.

The element shape functions are computed as Nk(ξ, η) = φi(ξ)φj(η); being φi and φj one-dimensional

LGL shape functions defined by Equation (25), and k = (i − 1)(p + 1) + j the related element node. The

shape functions Ne and its derivatives are symbolically computed in a straightforward procedure for an

arbitrary element order. Figure 6 shows the interpolation shape functions N25 and N41 for the spectral

element presented in Figure 5 (p = 6).
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Figure 5: Base element mesh and natural coordinate system used to obtain the physical representation of a spectral element

of order p = 6.
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Figure 6: Element shape functions (a) N25 and (b) N41 for a fluid spectral element with order p = 6.
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2.3. Fluid-solid coupling procedure

Equations (23) and (48) are coupled imposing equilibrium of normal pressure, null shear stresses and

compatibility of displacement at the interface Γf . Both equations are assembled into a single comprehensive

system, together with the equilibrium and compatibility conditions.

The load vector f̃q at the solid-fluid interface is obtained by integrating the fluid pressure field p̃q in Γq:

f̃q = −
∫

Γq

φTnsqNp̃q dΓ = −RT p̃q (52)

Substituting Equation (52) into Equation (23), the following system of equations is defined according to the

subdomain decomposition:  K̃ss K̃sq

K̃qs K̃qq

 ũs

ũq

 =

 f̃s

−RT p̃q

 (53)

where the subscript q indicates degrees of freedom belonging to Γq and s stands for the rest of structural

degrees of freedom.

Analogously, the fluid governing expression (Equation (48)) is split into two parts: F̃qq F̃qf

F̃fq F̃ff

 p̃q

p̃f

 =

 −ω2ρfRũq

0

 (54)

where the subscript q indicates degrees of freedom shared with the structural subdomain and f stands for

the rest of fluid degrees of freedom.

Finally, the coupling of Equations (53) and (54) is carried out with the imposition of equilibrium and

compatibility conditions at the interface Γq. Both systems of equations are assembled into an overall system:


K̃ss K̃sq 0 0

K̃qs K̃qq RT 0

0 ω2ρfR F̃qq F̃qf

0 0 F̃fq F̃ff




ũs

ũq

p̃s

p̃f

 =


f̃s

0

0

0

 (55)

Equation (55) is solved in the frequency-wavenumber domain to compute the coupled fluid-solid response.

3. Numerical verification

The proposed method was verified with benchmark problems that study the wave propagation in elastic

and acoustic waveguides. The numerical results were compared with reference solutions and the L2 scaled

error, ε2, was used to assess the accuracy [26]:

ε2 =
‖fex − fh‖
‖fex‖

(56)
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where fex denotes the reference solution and fh is the result computed by the proposed methodology. The

scaled L2 error ε2 is generally used to measure the pollution effect at high wavenumbers [26, 57].

Different h−p strategies were investigated to get the optimal discretisation with the lowest computational

effort. The nodal density per wavelength is used to describe the mesh density [58]:

dλ =
2πp

hk∗
(57)

where k∗ is a characteristic wavenumber, h is the element length and p is the order of the shape functions.

The benchmark problems presented herein were solved in a computer with an Intel Core i7-6600 pro-

cessor at 2.6 GHz. The transpose-free quasi-minimal residual method (TFQMR) together with an ILU

preconditioner were employed to solve the resulting system of equations.

3.1. Solid waveguide

The proposed spectral element for plate structures was verified studying the response of a lightened

aluminium clamped plate with a width W = 10 m. The plate thickness was set to t = 0.1 m, leading to

a slenderness ratio W/t = 100 which is in accordance to very thin plate behaviour. The structure was

vertically loaded by a harmonic force acting at x = W/2. The material properties were: Young’s modulus

E = 70× 109 N/m
2
, Poisson’s ratio ν = 0.25 and density ρ = 100 kg/m

3
.

The accuracy of the proposed element was tested against a thin-shell finite element approach [7].

The problem solution was computed in the frequency domain up to 700 Hz, considering a longitudinal

wavenumber kz = 0.4 rad/m. A SEM discretisation (1/h, p) = (2, 4) allowed a nodal density dλ ≥ 12

for the plane-wave phase velocity CL = (Dω2/ρt)0.25 in the slab [59, 60], where the bending stiffness was

D = Et3/12(1−ν2). The FEM discretisation adequately represented the slab response using a similar nodal

density as the SEM model. Figure 7 shows the vertical displacement at a point located at x = W/2 in

the frequency range from 0 to 700 Hz. The structural response showed peaks at the resonance frequencies,

where the proposed solution slightly differed with regard to FEM since the problem became ill conditioned.

Nevertheless, it can be concluded that the spectral element reproduced adequately the plate behaviour even

for a very thin plate. The shear locking did not appear in the proposed element formulation as it occurs

if an 2.5D element based on Reissner-Mindlin formulation is considered. Moreover, it should be mentioned

that the element did not present any problem when thick plates were studied.

Next, the scaled L2 error ε2 was computed for different h− p discretisations. A convergence study was

done in order to obtain a reference result from the proposed model since it does not exist any analytical

solution for the analysed problem. Four discretisations were considered with characteristic element size given

by 1/h = {0.2, 0.4, 1, 2}m−1. The element order p varied from 1 to 15. Figure 8.(a) shows the convergence

of the vertical displacement at x = W/2 for an excitation frequency of 700 Hz. The solution converged

to uy = 2.66 × 10−8 m for an adequate element order. The scaled L2 error ε2 is represented in Figure
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Figure 7: Vertical displacement at x = W/2 computed with the proposed method and the FEM [7].

8.(b) using this value as the reference for each discretisation. For finer discretisations, the error decayed

monotonically resulting in faster convergence. However, the coarser meshes 1/h = {0.2, 0.4}m−1 did not

present a monotonic decay due to their element size was not enough to properly compute the solution.

Therefore, low nodal densities per wavelength, dλ, discretisations did not represent accurately the problem

to be solved. The minimum error was ε2 ≈ 10−11. The lowest nodal densities to reach this error were

dλ = 13 for (1/h, p) = (0.4, 12), dλ = 24 for (1/h, p) = (1, 9), and dλ = 37 for (1/h, p) = (2, 7). The

coarsest mesh presented a minimum error ε2 ≈ 10−8 when dλ = 8 and p = 15. The computational CPU

time increased linearly with the element order, slightly affected by the problem discretisation (Figure 8.(c)).

Finer discretisations were more efficient than coarser meshes as they needed less computational effort for a

desirable error (Figure 8.(d)).

In some cases, a coarser mesh with lower nodal density could be required to compute the problem solution

with lower nodal density ensuring an acceptable accuracy. Table 2 shows typical discretisations to obtain

an error ε2 ≤ 10−3. It should be noticed that the nodal densities were higher as the element size decreased

since dλ is proportional to 1/h. The results conclude that a minimum nodal density dλ = 6 allowed to

approximate the problem solution with the indicated accuracy.

Table 2: Summary of nodal density (dλ), total number of degrees of freedom (DOF) and CPU time for different spectral h− p

discretisations to approximate the problem solution at excitation frequency 700 Hz with the accepted accuracy ε2 ≤ 10−3.

1/h [m−1] p [-] dλ [-] DOF [-] CPU [s]

0.2 12 6 50 2.969×10−3

0.4 8 8 66 2.016×10−3

1 5 13 102 1.326×10−3

2 4 21 162 1.154×10−3
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Figure 8: (a) Convergence of vertical displacement at x = W/2 for an excitation frequency 700 Hz, (b) scaled L2 error ε2, (c)

CPU time and (d) scaled L2 error ε2 versus CPU time for different discretisations 1/h and element polynomial orders p.

Finally, it can be concluded that the scaled L2 error ε2 was not affected by the longitudinal wavenumber

kz. Equation (22) states that the integration of element matrices does not depend on the longitudinal

wavenumber, so the accuracy of the method was not constrained by kz.

3.2. Fluid waveguide

This section analyses the feasibility of the proposed spectral element to study fluid acoustic problems.

The example concerned a rectangular fluid waveguide with a width W = 3 m and a height H = 2 m (Figure

9). The fluid had air properties with density ρf = 1.225 kg/m
3

and dilatational wave propagation velocity

cf = 340 m/s. The left side had null pressure while the opposite one was subjected to an uniform normal

velocity vn = 1 m/s. All the remaining boundaries had velocity constraint vn = 0 m/s. This problem has
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analytical solution for the one-dimensional case, i.e. kz = 0 [27]:

p(x, ω) =
1

kf
iρfω

sin(kfx)

cos(kfW )
(58)

Firstly, the problem solution was computed for a harmonic source with frequency 1000 Hz and kz = 0. Four

Ωf

W

Hp = 0 vn = 1

vn = 0

vn = 0

Figure 9: Fluid waveguide definition

different domain discretisations were investigated with characteristic element sizes 1/h = {1, 2, 4, 8}m−1

(Figure 10). Element order p varied from 1 to 15.

The accuracy of computed results was again evaluated using the scaled L2 error ε2 (Equation (56))

over the fluid domain [26] using the analytical solution as reference. Figure 11 represents the error, the

total number of degree of freedom, the CPU time and the error versus the CPU time for different h − p

configurations. The problem convergence started with an initial value ε2 = 1 for p = 1 and decreased for

a certain element order depending on the mesh discretisation [17]. From this order, the curves showed an

exponentially monotonic convergence with the element order p. For the finest mesh, 1/h = 8, the error did

not decrease with the increment of the element order from p = 13 because of the systems of equations for this

dense mesh and high-order approximations were ill conditioned as it was described in References [26, 61].

Regarding the nodal density dλ, it was found that it increased linearly with the element order according

to Equation (57), while the total number of degrees of freedom did it quadratically for 2D discretisations.

Figure 11.(c) represents the CPU time for the computation and assembly of elements matrices. The CPU

time was found adjusted to e0.5p for the studied discretisations. Medium size discretisations presented the

lowest computational effort for a moderate error level (Figure 11.(d)). However, the finest mesh became

more efficient as the required error decreased because of a lower element order was then needed.

The next issue concerned the identification of an adequate h − p discretisation to solve this problem

accurately with low CPU time consuming. Again, an error ε2 ≤ 10−3 was considered as an acceptable level

of accuracy. The coarsest mesh (1/h = 1 m−1) produced accurate results for an element order p = 15.
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Figure 10: Fluid domain discretisations for different element size: (a) 1/h = 1 m−1, (b) 1/h = 2 m−1, (c) 1/h = 4 m−1 and (d)

1/h = 8 m−1.

However, using finer discretisations, good results were computed, i. e. errors below the admissible tolerance,

with lower element order. Table 3 summarizes the nodal density per wavelength, the total number of degrees

of freedom (DOF) and the CPU time for the optimal h − p discretisation to reach the solution with the

acceptable error (Figure 11). This table shows that the configuration (1/h, p) = (2, 9) allowed the minimum

computational effort for the given accuracy. Other h − p pairs involved higher computational effort due

to the increment of DOF or high order interpolation functions that required quite computational effort to

obtain the fluid matrices.

Finally, the problem solution was computed for a frequency range from 2 Hz to 1024 Hz and kz = 0 using

the discretisation (1/h, p) = (2, 9). Figure 12.(a) compares the analytical and the numerical solutions. The

fluid response exhibited several resonances at frequencies fn given by [27]:

fn = (2n− 1)
cf

4W
n = 1, 2, . . . (59)
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Figure 11: (a) Scaled L2 error ε2, (b) total number of degree of freedom, (c) CPU time and (d) scaled L2 error ε2 versus CPU

time for different discretisations 1/h and element polynomial orders p.

Table 3: Summary of nodal density (dλ), total number of degrees of freedom (DOF), and CPU time (CPU) for different spectral

h− p discretisations to approximate the problem solution with the accepted accuracy ε2 ≤ 10−3.

1/h [m−1] p [-] dλ [-] DOF [-] CPU [s]

1 15 5 1426 5.387×10−1

2 9 6 2035 8.065×10−2

4 6 8 3577 1.582×10−1

8 4 10 6305 1.803×10−1

The accuracy of the proposed methodology was also evaluated from the solutions obtained with the h−p pairs

showed in Table 3. Figure 12.(b) shows the error ε2 and the nodal density per wavelength. The minimum

error oscillated around ε2 = 10−14 for very high values of the nodal density dλ. The error increased along the
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frequency range as the wavelength decreased. It is mentioned that several peaks appeared at the resonance

frequencies where the problem was ill conditioned [26].
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Figure 12: (a) Fluid pressure at x = 1.5 m and y = 1 m computed with the element order discretisation (1/h, p) = (2, 9). (b)

Scaled L2 error ε2 and nodal density per wave length dλ for different h− p discretisation.

The h− p analysis concluded that the uniform p enrichment with a fixed mesh presented higher rates of

convergence than the h refinement [62, 63]. Also, we found that a coarse mesh with a high element order

produced accurate results with low computational effort when at least a nodal density per wavelength dλ = 6

was ensured.

3.3. Rectangular duct with a flexible wall

In this section we studied the possibilities of the proposed methodology for studying fluid–structure

interaction problems. The verification example represented an infinite cavity with one flexible side (Figure

13). At the remaining three sides, boundary conditions vn = 0 m/s were provided. The system dimensions

were width W = 0.106 m and height H = 0.09 m. The flexible plate was modelled as a clamped slab

of thickness t = 6 × 10−3 m, Young modulus E = 7.2 × 1010 N/m
2
, Poisson’s ratio ν = 0.34 and density

ρ = 2700 kg/m
3
. The fluid was air with density ρf = 1.2 kg/m

3
and sound propagation velocity cf = 344 m/s.

The problem discretisation was set to h = 4 m−1 using an element order p = 6. Lawrie [3] presented the

solution of this problem using a hybrid analytic-numerical method for modelling three-dimensional ducts

of rectangular cross-section with flexible walls. The results computed by the proposed methodology were

compared with the results from this semi-analytical approach.

The phase velocities of the FSI problem were computed to investigate the propagating modes of the

system. Besides, the phase velocities were compared with those obtained from the structure and the fluid

cavity neglecting the interaction between them. Figure 14 shows the phase velocities C = ω/kz. Here, the
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Figure 13: Rectangular duct with a flexible wall.

angular frequency ω was computed from an eigenvalue analysis of the equilibrium Equations (23), (48) and

(55) for logarithmic spaced wavenumbers. The slab phase velocities (Figure 14.(a)) exhibited several cut-off

frequencies which are in accordance with fn = 0.5πn2(EI/mW 4)0.5, where m = ρt = 1.62 kg/m
2
. Later,

the waves became propagative and tended to the phase velocity CL of the propagating plane waves in the

slab [59]. The phase velocity curves were found to be dispersive over the entire frequency range.

On the other hand, the phase velocities for a rectangular acoustic waveguide with dimension W ×H

are given by Cmn = c2f
(
(mπ/kzW )2 + (nπ/kzH)2 + 1

)0.5
, where Cmn is the phase velocity related to the

propagating acoustic mode at the cut-off frequency fmn = cf/2π((mπ/W )2 + (nπ/H)2)0.5. For the sake of

simplicity, Figure 14.(b) only presents the phase velocity curves for the first five acoustic modes given by the

frequencies f00 = 0 Hz, f10 = 1623 Hz, f20 = 3245 Hz, f01 = 1911 Hz and f11 = 2507 Hz. The first acoustic

mode had a non-dispersive phase velocity equals to the sound propagation velocity, cf , while higher modes

were dispersive with similar behaviour going to cf above the cut-off frequency fmn.

The phase velocities of the coupled problem provided the structural and the acoustic propagating modes.

Figure 14.(c) presents three phase velocity curves. The propagation velocity of the first mode was close to

the sound propagation velocity in the fluid at low frequencies and went to the plane wave phase velocity CL

of the slab as the frequency increased. The second mode exhibited a similar trend to that of the uncoupled

slab around the cut-off frequency and became non-dispersive for high frequencies. Finally, the third mode

was similar to the second one of the slab without interaction. Computed results were in accordance with

the semi-analytical solution proposed by Lawrie [3]. The mismatches found in the Figure 14.(c) can be

explained taking into account that the plate had a ratio W/t = 17.6 and it was modelled as a thin plate in

Reference [3].
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Figure 14: Phase velocity for (a) the structure, (b) the fluid and (c) the coupled fluid-structure system.

4. Numerical examples

In this section, two examples show the possibilities of the proposed methodology for studying fluid–structure

interaction problems.

4.1. Acoustic cavity with a flexible side subjected to bending moment

The first example represented an infinite cavity with one flexible side subjected to a harmonic bending

moment M (Figure 15). At the remaining three sides, boundary conditions vn = 0 m/s were provided. The

system dimensions were width W = 10 m and height H = 4 m.

This problem was firstly studied by Sandberg et al. [51] who computed the modes of the system. Later,

Rodŕıguez-Tembleque et al. [52] analysed the fluid-structure response due to a harmonic bending moment
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Figure 15: Acoustic cavity with a flexible side subjected to bending moment.

M = M0e
iωt applied at one edge. Both analyses were done using a 2D formulation based on either a finite

element formulation [51] or a coupled finite-boundary element formulation [52]. The cited authors modelled

the structure as a beam with Young modulus E = 2.1 × 1011 N/m
2
, Poisson’s ratio ν = 0.3, mass per unit

length m = 50 kg/m, cross section A = 0.02 m2 and inertia I = 1.59 × 10−4 m4. The fluid was water with

density ρf = 1000 kg/m
3

and sound propagation velocity cf = 1500 m/s.

In this work, we studied the 3D response of the fluid-structure system considering that the geometrical

and material properties remained invariant along the z direction. The structure was modelled as a simply

supported slab of thickness t = 0.1202 m, Young modulus E = 2.1× 1011 N/m
2
, Poisson’s ratio ν = 0.3 and

density ρ = 416 kg/m
3
. These properties gave a bending stiffness D = Et3/12(1− ν2) and a mass per unit

length m = ρt equivalent to the beam described in References [51, 52]. The problem discretisation was set

to 1/h = 4 m−1 using a proper element order to ensure a nodal density account for the fluid wavelength

dλ ≥ 6. The element order was not lower than p = 6 in any case according to the convergence criterion

presented in Table 3.

The cut-off frequencies of the 3D coupled system for the first five propagating modes were 6.57 Hz,

20.31 Hz, 43.85 Hz, 75.95 Hz and 94.69 Hz. These results were compared to the 2D problem solution obtained

by Rodŕıguez-Tembleque et al. [52] from a BEM-FEM model and with a FEM model when the system was

subjected to a bending moment M = M0e
iωt acting in one edge of the slab. Figure 16 shows the slab

rotation at x = (10, 4, 0) and the natural frequencies presented by Sandberg et al. [51]. The computed

response exhibited resonances at the cut-off frequencies shown in Figure 14.(c). The proposed results were

in good accordance with References [51, 52].

Finally, this example examined the time domain response of the comprehensive problem produced by

an impulsive bending moment. The excitation source was modelled as a Ricker pulse with a characteristic

frequency fm = 3000 Hz, which was defined by Bf (ω) = 2ω2/ω3
m exp(−ω2/ω2

m) [64], being ωm = 2πfm.

The 3D solution was computed as the superposition of problems with different wavenumbers in the interval
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Figure 16: Rotation angle θx at x = (10, 4, 0) computed with the proposed method compared with those presented by Rodŕıguez-

Tembleque et al. [52] and with a finite element model. The resonance frequencies presented by Sandberg et al. [51] are also

indicated.

−20.1, rad/m ≤ kz ≤ 20.1 rad/m. The wavenumber sampling ∆kz = 0.157 rad/m allowed to compute the

solution for a maximum distance z = π/∆kz = 20 m from the source into a regularly spaced points with

∆z = 2π/max(kz) = 0.312 m. The time domain solution was evaluated from an inverse Fourier transform

of several harmonic problems in the frequency range from 10 to 10240 Hz, with a frequency sampling of

∆f = 10 Hz. Complex frequencies with an imaginary part of the form =(ω) = −0.7∆ω were used to reduce

the contribution of the virtual source to the response and to prevent the occurrence of aliasing phenomenon.

The effect of the imaginary part was removed in the time response applying an exponential window as

e0.7∆ωt [65].

Figure 17 shows the slab rotation and the fluid pressure at the observation point located at x = (10, 4, 0).

The time histories showed an initial perturbation at the arrival time 0.0067 s due to waves travelling at cf ,

followed by a ring of high-frequency produced by the guided wave until the time 0.0132 s. Later, a set of

travelled waves struck repeatedly with higher amplitude than the first wave package.

The wave propagation was best regarded if the snapshot of the overall fluid-structure domain was studied

at different times. Figures 18-21 present the slab deformation and the pressure field at four time steps. Two

kinds of waves could be distinguished at t = 0.00489 s (Figure 18): a low amplitude wavefront travelling

at cf followed by a slower circumferential wavefront with higher amplitude. This last mentioned wave

reached the cavity bottom and was reflected toward the surface generating a high amplitude pulse at the

time t = 0.01095 s (Figure 19). Then, a new wavefront caused by this pulse spreading along the slab with a

typical cone Mach distribution as it can be seen in Figure 20. It was repeated every time a wave travelling

from the cavity bottom struck the slab (Figure 21). The wave propagation pattern became more complex as

successive waves were reflected in the slab and the cavity boundaries (see the animated results in the online
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Figure 17: Time response for (a) structure rotation θx and (b) fluid pressure at a point located at x = (10, 4, 0).

version). The sound wave propagation interacting with the slab structure produced an amplification of the

bending waves, resulting in a repeated wave package with higher amplitude than the initial perturbation

owing to the excitation.

Figure 18: Fluid pressure (normalised to 4.0 × 10−5 Pa) and the vertical plate displacement (normalized to 2.3 × 106 m) at

time t = 0.00489 s.
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Figure 19: Fluid pressure (normalised to 4.0 × 10−5 Pa) and the vertical plate displacement (normalized to 2.3 × 106 m) at

time t = 0.01095 s.

Figure 20: Fluid pressure (normalised to 4.0 × 10−5 Pa) and the vertical plate displacement (normalized to 2.3 × 106 m) at

time t = 0.01565 s.

4.2. Helmholtz resonator with a flexible plate

The last example studied the wave propagation in a Helmholtz resonator [53] coupled to an acoustic

cavity of dimensions W × H = 0.01 × 0.0025 m (Figure 22). The cavity was subjected to an unit normal

velocity vn = 1 m/s acting in one edge at z = 0, whereas null pressure was prescribed in the opposite
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Figure 21: Fluid pressure (normalised to 4.0 × 10−5 Pa) and the vertical plate displacement (normalized to 2.3 × 106 m) at

time t = 0.02152 s.

side. The Helmholtz resonator had two parts: (i) a cavity with dimensions Wc × Hc = 0.004 × 0.0025 m

and (ii) a neck connector with dimensions Wn × Hn = 0.0013 × 0.0012 m. The resonator cavity had a

flexible side at the bottom that was modelled as a plate (Ωs) with thickness t = 8.3 × 10−4 m, Young

modulus E = 2.4 × 1011 N/m
2
, Poisson’s ratio ν = 0.3 and density ρ = 7800 kg/m

3
. The plate was fixed

at both ends. All the remaining boundaries were rigid with constrained velocity vn = 0 m/s. The fluid

had water properties with density ρ = 1000 kg/m
3

and sound propagation velocity cf = 1500 m/s. The

problem solution was computed in the frequency-wavenumber domain for 2048 frequency lines up to 1 MHz.

A longitudinal wavenumber range up to kz = 12600 rad/m with a step ∆kz = 200 rad/m was analysed. The

element size was enough to ensure a minimum nodal density per wavelength dλ = 6 by an element order

p = 6.

The frequency response function (FRF) was computed at the midpoint of the plate for z = 0.01 m. This

FRF (Figure 23.(a)) showed several peaks corresponding to resonance frequencies of the system. The time

response was computed by the inverse Fourier transform of the FRF and it was considered an excitation

source represented as a Ricker pulse with a characteristic frequency fm. Figure 23.(b) presents the time

history of the plate displacement normalised to the excitation velocity vn = 1 m/s for two different source

frequencies: fm = 65 kHz and fm = 196 kHz. These frequencies corresponded to the propagating mode

shapes showed in Figure 24. Although the plate displacement followed an oscillating response with resonant

behaviour in both cases, the maximum amplitude occurred for the second frequency since it had a higher

participation factor for the plate in relation to the first mode which induced mainly an acoustic perturbation.
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A few comments on the performance of the method in the final example with the Helmholtz resonator

should be added in the end of the corresponding section.
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Figure 23: (a) Frequency response function of plate midpoint due to a normal velocity vn = 1 m/s and (b) displacement of

plate midpoint due to a Ricker pulse with a characteristic frequency fm.

5. Conclusions

This paper has presented a new spectral element methodology to study guided waves on thin-walled

structures with fluid-acoustic interaction. The method has been formulated in 2.5D and it is suitable for

studying 3D problems whose material and geometric properties are homogeneous in one direction. Two

novel spectral elements have been proposed to represent thin plates and acoustic cavities using Lagrange

interpolation polynomials as shape functions at the Legendre-Gauss-Lobatto points.
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(a) (b)

Figure 24: Fluid (colour map) and plate (solid line) propagating mode shapes at cross section z = 0 at frequencies: (a) 65 kHz

and (b) 196 kHz.

This work has developed a C0 plate element formulated in 2.5D based on a mixed Reissner-Mindlin/Kirchhoff-

Love formulation which allows to represent thick and thin plates. The use of a substitute transverse shear

strain matrix has given an element shear-locking free. The spectral fluid element in 2.5D has been derived

from the Helmholtz equation. Both elements have been numerically verified from benchmark problems.

The agreement with the reference solutions is quite good. The convergence analysis for different h − p

discretisations shows that a nodal density of six nodes per wavelength is enough to achieve the problem

solution.

Finally, a time-frequency analysis was carried out in two numerical examples. In both cases, several

propagating modes were identified from the frequency response function. The time response was computed

by the inverse Fourier transform of the FRF for an excitation source described as a Ricker pulse. The

wave propagation exhibited a complex pattern due to the FSI effects. The obtained result emphasises the

importance of the fluid-structure interaction on wave guides.
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[65] E. Kausel, J. M. Roësset, Frequency domain analysis of undamped systems, Journal of Engineering Mechanics 118 (4)

(1992) 724–734.

37


	Introduction
	Numerical model
	The 2.5D stabilised plate spectral element
	The 2.5D spectral element method in fluid-acoustics
	Fluid-solid coupling procedure

	Numerical verification
	Solid waveguide
	Fluid waveguide
	Rectangular duct with a flexible wall

	Numerical examples
	Acoustic cavity with a flexible side subjected to bending moment
	Helmholtz resonator with a flexible plate

	Conclusions

