115 research outputs found

    Measurement of the compressive crack resistance curve of composites using the size effect law

    Get PDF
    This paper presents a new methodology to measure the compressive crack resistance curve of the longitudinal plies of carbon-epoxy laminates. The methodology is based on three main steps: the first one corresponds to the determination of the energy release rate of cross-ply laminates with two edge cracks using a parametric finite element model. The energy release rate is used in the definition of a relation between the crack resistance curve and the size effect. Finally, experimental tests are performed in scaled double-edge notched specimens to quantify the size effect law, thus proving the last piece of information required to define the crack resistance curve. The full crack resistance curve is obtained for the IM7-8552 carbon epoxy composite material. The methodology proposed in this paper overcomes the inherent limitations of the existing test methods, and it serves as the basis for the identification of cohesive laws used in some analysis models

    Curbing Dropout: Predictive Analytics at the University of Porto

    Get PDF
    This study explores data mining techniques for predicting student dropout in higher education. The research compares different methodological approaches, including alternative algorithms and variations in model specifications. Additionally, we examine the impact of employing either a single model for all university programs or separate models per program. The performance of models with students grouped according to their position on the program study plan was also tested. The training datasets were explored with varying time series lengths (2, 4, 6, and 8 years) and the experiments use academic data from the University of Porto, spanning the academic years from 2012 to 2022. The algorithm that yielded the best results was XGBoost. The best predictions were obtained with models trained with two years of data, both with separate models for each program and with a single model. The findings highlight the potential of data mining approaches in predicting student dropout, offering valuable insights for higher education institutions aiming to improve student retention and success

    An All-Solid-State Coaxial Structural Battery Using Sodium-Based Electrolyte

    Get PDF
    The transition to a sustainable society is paramount and requires the electrification of vehicles, the grid, industry, data banks, wearables, and IoT. Here, we show an all-solid-state structural battery where a Na+-based ferroelectric glass electrolyte is combined with metallic electrodes/current collectors (no traditional cathode present at fabrication) and thin-ply carbon-fiber laminates to obtain a coaxial multifunctional beam. This new concept aims to optimize the volume of any hollow beam-like structure by integrating an electrochemical system capable of both harvesting thermal and storing electrical energy while improving its mechanical performance. The coaxial cell is a coaxial cable where the dielectric is ferroelectric. The electrochemical results demonstrated the capability of performing three-minute charges to one-day discharges (70 cycles) and long-lasting discharges (>40 days at 1 mA) showing an energy density of 56.2 Wh center dot L-1 and specific energy of 38.0 Wh center dot kg(-1), including the whole volume and weight of the structural cell. This is the highest specific energy among safe structural cells, while no Na+-based structural cells were found in the literature. The mechanical tests, instead, highlighted the coaxial cell capabilities to withstand severe inelastic deformation without compromising its functionalities, while increasing the flexural strength of the hosting structure. Moreover, the absence of alkali metals and liquid electrolytes together with its enhanced thermal properties makes this coaxial structural battery a valid and safe alternative as an energy reservoir for all the applications where traditional lithium-ion batteries are not suitable

    Effective Simulation of Delamination in Aeronautical Structures Using Shells and Cohesive Elements

    Get PDF
    A cohesive element for shell analysis is presented. The element can be used to simulate the initiation and growth of delaminations between stacked, non-coincident layers of shell elements. The procedure to construct the element accounts for the thickness offset by applying the kinematic relations of shell deformation to transform the stiffness and internal force of a zero-thickness cohesive element such that interfacial continuity between the layers is enforced. The procedure is demonstrated by simulating the response and failure of the Mixed Mode Bending test and a skin-stiffener debond specimen. In addition, it is shown that stacks of shell elements can be used to create effective models to predict the inplane and delamination failure modes of thick components. The results indicate that simple shell models can retain many of the necessary predictive attributes of much more complex 3D models while providing the computational efficiency that is necessary for design

    Cohesive Elements for Shells

    Get PDF
    A cohesive element for shell analysis is presented. The element can be used to simulate the initiation and growth of delaminations between stacked, non-coincident layers of shell elements. The procedure to construct the element accounts for the thickness offset by applying the kinematic relations of shell deformation to transform the stiffness and internal force of a zero-thickness cohesive element such that interfacial continuity between the layers is enforced. The procedure is demonstrated by simulating the response and failure of the Mixed Mode Bending test and a skin-stiffener debond specimen. In addition, it is shown that stacks of shell elements can be used to create effective models to predict the inplane and delamination failure modes of thick components. The results indicate that simple shell models can retain many of the necessary predictive attributes of much more complex 3D models while providing the computational efficiency that is necessary for design

    Measurement of resistance curves in the longitudinal failure of composites using digital image correlation

    Get PDF
    This paper presents a new methodology to measure the crack resistance curves associated with fiber-dominated failure modes in polymer–matrix composites. The crack resistance curves not only characterize the fracture toughness of the material, but are also the basis for the identification of the parameters of the softening laws used in the numerical simulation of fracture in composite materials. The proposed method is based on the identification of the crack tip location using Digital Image Correlation and the calculation of the J-integral directly from the test data using a simple expression derived for cross-ply composite laminates. It is shown that the results obtained using the proposed methodology yield crack resistance curves similar to those obtained using Finite Element based methods for compact tension carbon–epoxy specimens. However, it is also shown that, while the Digital Image Correlation based technique mitigates the problems resulting from Finite Element based data reduction schemes applied to compact compression tests, the delamination that accompanies the propagation of a kink-band renders compact compression test specimens unsuitable to measure resistance curves associated with fiber kinking

    A Micromechanics-Based Damage Model for the Strength Prediction of Composite Laminates

    Get PDF
    A new damage model based on a micromechanical analysis of cracked [+/-0deg/90deg(sub n)]s laminates subjected to multiaxial loads is proposed. The model predicts the onset and accumulation of transverse matrix cracks in uniformly stressed laminates, the effect of matrix cracks on the stiffness of the laminate, as well as the ultimate failure of the laminate. The model also accounts for the effect of the ply thickness on the ply strength. Predictions relating the elastic properties of several laminates and multiaxial loads are presented

    Simulation of Delamination Under High Cycle Fatigue in Composite Materials Using Cohesive Models

    Get PDF
    A new thermodynamically consistent damage model is proposed for the simulation of high-cycle fatigue crack growth. The basis for the formulation is an interfacial degradation law that links Fracture Mechanics and Damage Mechanics to relate the evolution of the damage variable, d, with the crack growth rate da/dN. The damage state is a function of the loading conditions (R and (Delta)G) as well as the experimentally-determined crack growth rates for the material. The formulation ensures that the experimental results can be reproduced by the analysis without the need of additional adjustment parameters

    Simulation of Delamination Propagation in Composites Under High-Cycle Fatigue by Means of Cohesive-Zone Models

    Get PDF
    A damage model for the simulation of delamination propagation under high-cycle fatigue loading is proposed. The basis for the formulation is a cohesive law that links fracture and damage mechanics to establish the evolution of the damage variable in terms of the crack growth rate dA/dN. The damage state is obtained as a function of the loading conditions as well as the experimentally-determined coefficients of the Paris Law crack propagation rates for the material. It is shown that by using the constitutive fatigue damage model in a structural analysis, experimental results can be reproduced without the need of additional model-specific curve-fitting parameters

    Three-dimensional failure criteria for fiber-reinforced laminates

    Get PDF
    This paper proposes a new fully three-dimensional failure criteria for polymer composites reinforced by unidirectional fibers. Existing failure criteria based on three-dimensional stress states are revisited and their limitations and pitfalls are identified. A new set of failure criteria for both longitudinal and transverse failure mechanisms where the effect of ply thickness on the material strength is accounted for is proposed. The accuracy of the failure criteria is assessed by comparing the analytical predictions with existing experimental data obtained under multiaxial stress states. A good agreement between the predictions and experimental data is generally observed
    • …
    corecore