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Abstract

This paper proposes a new fully three-dimensional failure criteria for polymer
composites reinforced by unidirectional fibers. Existing failure criteria based on
three-dimensional stress states are revisited and their limitations and pitfalls are
identified. A new set of failure criteria for both longitudinal and transverse failure
mechanisms where the effect of ply thickness on the material strength is accounted
for is proposed. The accuracy of the failure criteria is assessed by comparing the
analytical predictions with existing experimental data obtained under multiaxial
stress states. A good agreement between the the predictions and experimental data
is generally observed.
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1 Introduction

The prediction of the onset of the failure mechanisms of the elementary ply in
polymer composites reinforced by unidirectional fibers has been the subject of
detailed investigations over the last twenty years [1–12]. In simple terms, the
ply failure mechanisms may be divided into transverse failure mechanisms,
which include cracking of both the matrix and fiber-matrix interface, and
longitudinal failure mechanisms where cracking occurs in both the fibers and
matrix.

While significant effort has been devoted to the prediction of ply failure mech-
anisms under plane stress states [3,4], more general failure criteria applicable
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to general stress states are required [13]. Three-dimensional stress states occur
not only at geometric discontinuities of multidirectional laminates (e.g. free-
edges, open and loaded holes), but also in a number of relevant applications
of composite materials such as raisers for oil extraction in deep waters. In
addition, some of the recent developments in computational damage mechan-
ics models for composite laminates [14,15] that simulate the propagation of
ply failure mechanisms rely not only on the accurate prediction of the onset
of failure but also on geometric information on the failure mechanism: the
fracture plane.

Based on the previous observations, the main objective of this paper is to
propose and to validate a new three-dimensional failure criteria for polymer
composites that predicts the onset of the different failure mechanisms and that
provides additional information on the type of failure and on the orientation
of the fracture plane. The paper starts with a critical examination of existing
three-dimensional failure criteria where some limitations and pitfalls are iden-
tified by applying the existing criteria under simple stress states. Next, the
new failure criteria for longitudinal and transverse failure mechanisms are de-
scribed and validated using both simple stress states and previously obtained
experimental data results. Finally, the paper presents the main conclusions of
this study and suggestions for future research.

2 Criteria for transverse failure mechanisms

In the following, some three-dimensional failure criteria for transverse, matrix-
dominated failure mechanisms are critically revisited. According to Puck, the
failure index for a general stress state is a scalar function of the traction
vector acting on the fracture plane as shown in Figure 1. Defining α as the
angle between the fracture plane and the through-the-thickness direction, the
failure index depends on the tractions acting on the fracture surface and,
therefore, on the angle α.

[Fig. 1 about here.]

Defining the unit normal vector to the fracture plane as:

n2 =
{

0 cos (α) sin (α)

}T
(1)

the traction acting on the fracture plane, t, is:

t = σ · n2 (2)
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where σ is the stress tensor.

The orientation of the fracture plane is a function of the components of the
traction vector that maximizes a failure index for a particular value of α. These
components are the normal stress and the two shear stresses (longitudinal and
transverse) as shown in Figure 1.

The normal, tN , and the shear components, tL and tT , of the traction tensor
are given as:

tN = t · n2, tL = t · n1, tT = t · (n1 × n2) (3)

where n1 =
{

1 0 0

}T
.

The failure criteria depends on the sign of the normal stress. There is a failure
criterion for matrix compression if tN < 0, and failure criterion for matrix
tension when tN > 0.

2.1 Overview of existing failure criteria for transverse compression

2.1.1 Puck’s criterion

Puck et al. [16,17,5,9] performed matrix compression tests and observed that a
modified Mohr-Coulomb criterion can be used to predict the orientation of the
fracture plane. For pure transverse compression loading (σ22 6= 0 and σij = 0)
the maximum shear stress occurs for α = ±π/4. However, experimentally it
was observed that for fiber reinforced plastics the fracture angle is equal to
α0 = 53 ± 2◦ [16,17]. The difference between the two angles was associated
with the effect of the compressive stress on the ply failure mechanisms.

Puck and Shürmann’s criterion [5] is expressed as:

φMC =

(

tL
SL − ηLtN

)2

+

(

tT
ST − ηT tN

)2

(4)

This criterion does not account for the in-situ effects, i.e., for the increase of
the shear strength of a ply when embedded in a multidirectional laminate [30].
Therefore the following modification of Puck’s criterion is proposed:

φMC =

(

tL
Sis
L − ηLtN

)2

+

(

tT
Sis
T − ηT tN

)2

(5)
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where Sis
L is the in-situ longitudinal shear strength, Sis

T is the in-situ transver-
sal shear strength, and ηL and ηT are friction coefficients that correspond to
the two slopes in the tN -τ diagram when tN = 0 and are defined as:

ηL = − ∂tL
∂tN

∣

∣

∣

∣

∣

tN=0

ηT = − ∂tT
∂tN

∣

∣

∣

∣

∣

tN=0

(6)

It should be noted that the Fracture Mechanics models developed to estimate
the in-situ strengths neglect the effect of the stiffness of the sub-laminates that
constrain the ply. The values of the in-situ strengths accounting for the stiffness
of the outer layers could be calculated using non-linear finite element methods
with enough resolution through the thickness of the ply. Therefore, the values
of the in-situ strengths used in this paper are, in general, approximate values
of the strength of a ply.

Equation (5) can be used to evaluate in a consistent way the different parame-
ters that define the failure criteria. The predictive capabilities of the criterion
will be assessed in the following points by applying the criterion to simple
stress states.

2.1.1.1 Hypothesis 1: σ22 = −Y is
C If only a compressive stress σ22 =

−Y is
C is applied the material must fail with a fracture angle α equal to α0.

Under pure transverse compression the failure index is expressed as:

φMC =
sin2 (α) cos2 (α)Y is

C

2

(Sis
T + ηT cos2 (α)Y is

C )
2 (7)

The derivative of (7) with respect to α yields:

∂φMC

∂α
=2

sin (α) cos3 (α)Y is
C

2

(

S is
T + ηT cos (α)2Y is

C

)2 − 2
sin3 (α) cos (α)Y is

C

2

(S is
T
+ ηT cos2 (α)Y is

C
)
2

+ 4
sin3 (α) cos3 (α)Y is

C

3
ηT

(S is
T + ηT cos2 (α)Y is

C )
3

(8)

Fracture must occur at the plane defined by the angles α = α0 or α = π −
α0. For this value of α, the following conditions must apply: φMC = 1 and
∂φMC/∂α = 0. Substituting α = α0 in equations (7) and (8), the transverse
shear strength and the compressive transverse strength can be obtained solving
the following system of non-linear equations:

4













φMC |α=α0
= 1

∂φMC

∂α

∣

∣

∣

α=α0

= 0
(9)

Assuming the relationship for the friction coefficients proposed by Puck and
Shürmann [9]:

ηL/ηT = Sis
L /S

is
T (10)

and considering that the in-plane shear strength and the longitudinal fric-
tion coefficient are material parameters that can be measured, the system of
equations (9) is solved for Y is

C and Sis
T :

Y is
C = −Sis

L (2 cos2 (α0)− 1)

ηL cos2 (α0)
(11)

Sis
T =

1

2

(

2 sin2 (α0)− 1
)

Sis
L

√

1− sin2 (α0) sin (α0) ηL
(12)

The longitudinal angle of internal friction, ηL, can be obtained from a 15◦ off-
axis compression test [24]; the in-situ shear strength, Sis

L , is calculated from
the analytical model proposed in [30].

If equations (11)-(12) are used, the failure index is equal to 1, the first deriva-
tive is equal to zero, and the second derivative reads:

∂2φMC

∂α2

∣

∣

∣

∣

∣

α=α0

=
2

cos2 (α0) (cos2 (α0)− 1)
(13)

which is negative as required. If the conditions expressed by equations (11)
and (12) are not satisfied, the function φMC will take the value 1 for α = α0

but its maximum will not occurr for the correct fracture angle. This will result
in errors if the failure angle is found maximizing numerically equation (7).

For example, for carbon IM7/8552 (Sis
L=130.2MPa, ηL = 0.5) the failure index

as a function of the angle α is shown in Figure 2. It should be noticed that
the maximum value of φMC is correctly calculated for α = α0.

[Fig. 2 about here.]
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2.1.1.2 Hypothesis 2: τ12 = Sis
L If only the shear stress τ12 = Sis

L is
applied the fracture angle must be α = 0.

In this case equation (5) results in:

φMC = cos2 (α) (14)

and:

∂φMC

∂α
= −2 cos (α) sin (α) (15)

As expected, the failure index and the derivative are equal to 1 and 0 re-
spectively when α = 0. The second derivative of this function is negative
(∂2φMC/∂α

2 = −2) and this assures that the failure criterion is maximized.
Figure 3 shows the failure index as a function of the angle α. The fracture
angle is well predicted.

[Fig. 3 about here.]

2.1.1.3 Conclusion Puck’s failure criterion describes very well the frac-
ture of the matrix if the in-situ strengths Y is

C and Sis
T are defined according

to equations (11) and (12).

2.2 Overview of existing failure criteria for transverse tension

2.2.1 Quadratic Interaction Criterion

The quadratic interaction criterion proposed by Pinho [18] assumes a quadratic
interaction between the components of the traction on the fracture plane. The
criterion is given by the following expression:

φMT =

(

tN
Y is
T

)2

+

(

tL
Sis
L

)2

+

(

tT
Sis
T

)2

(16)

where Y is
T is the in-situ transverse tensile strength. As before, Y is

T is a function
of the ply thickness, and it can be calculated using the equations derived
in [30].
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2.2.1.1 Hypothesis: σ22 = Y is
T Under this stress state the fracture plane

should be α = 0 and φMT = 1. However, if the fracture angle is not known
in advance, but rather searched by maximizing the failure index (equation
(16)) with respect to α, which is the normal procedure in the computational
implementation of the failure criterion, the failure index reads:

φMT = cos4 (α) + sin2 (α) cos2 (α) k2 (17)

where k = Y is
T /Sis

T .

Figure 4 shows φMT as a function of k and α.

[Fig. 4 about here.]

The derivative of equation (17) with respect to α is:

∂φMT

∂α
= −4 cos3 (α) sin (α) + 2 sin (α) cos3 (α) k2 − 2 sin3 (α) cos (α) k2 (18)

while the second derivative of φMT with respect to α, for α = 0 reads:

∂2φMT

∂α2

∣

∣

∣

∣

∣

α=0

= −4 + 2 k2 (19)

which should be negative if α = 0 maximizes the failure index, equation (17).
Consequently in the case of a unidirectional tension the criterion provides
correct predictions only if:

k ≤
√
2/2 ⇒ Y is

T ≤
√
2Sis

T (20)

For example, in the case of a thin ply of IM7/8552 carbon, k =
Y is

T

Sis

T

=

160.2/74.7 = 2.1. It should be noted that the value of Sis
T is calculated using

equation (12). The failure index φMT for IM7/8552 is reported in Figure 5.

[Fig. 5 about here.]

Figure 5 shows that under pure transverse tension, the failure criterion predicts
that failure occurs when σ22 < Y is

T , and the corresponding fracture plane is
different than α = 0. This is obviously wrong.
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2.2.2 Mohr-Coulomb Criterion for Tension and Compression

Gutkin et al [31] use, for tension and compression, a modification of Puck’s
criterion (on (4)):

φM =

(

tL
SL − ηLtN

)2

+

(

tT
ST − ηT tN

)2

+

〈

tN
Y is
T

〉

(21)

where 〈•〉 is the McAuley operator defined as 〈x〉 = 1/2(x+ |x|).

2.2.2.1 Hypothesis: σ22 = Y is
T Under this stress state the failure index

reads:

φMT = φM |tN=0 = cos2 (α) +

(

sin (α) cos (α)Y is
T

Sis
T − ηT cos2 (α)Y is

T

)2

(22)

To be consistent with the experimental observations, the fracture angle must
be located at α = 0. This implies the following equations:

∂φMT

∂α

∣

∣

∣

∣

∣

α=0

= 0 (23)

∂2φMT

∂α2

∣

∣

∣

∣

∣

α=0

= −2 + 2

(

Y is
T

Sis
T − ηTY is

T

)2

< 0 (24)

Equation (24) results in:

−1 <
Y is
T

Sis
T − ηTY is

T

< 1 (25)

that it is not always respected in structural composites. For example, in the
case of a thin ply of IM7/8552 carbon-epoxy (Y is

T = 160.2, Sis
T = 74.7, ηT =

0.3),
Y is

T

Sis

T
−ηT Y is

T

= 6.0; in this case equation (25) is not satisfied.

For this reason, under pure transverse tension, the failure criterion predicts
that failure occurs when σ22 < Y is

T , and the corresponding fracture plane is
different than α = 0.

2.2.3 Puck’s criterion

Puck proposed the following elliptical interaction criterion [19]:
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φMT =
(

τ

Sis

)2

+ c1
tN
Y is
T

+ c2

(

tN
Y is
T

)2

(26)

where τ is the shear stress acting on the fracture plane, tN is the normal stress
and c1 and c2 are parameters that can be determined imposing appropriate
boundary conditions. Sis is the shear strength on the fracture plane. The shear
on the fracture plane is given as:

τ =
√

t2L + t2T (27)

and the angle ω between the shear stress tT and τ is equal to:

ω = arctan (tL/tT ) (28)

2.2.3.1 Determination of Sis If only tT and tL are non-zero, the failure
criterion for tension (equation (26)) and for compression (equation (5)) should
give the same results. Therefore, φMC = φMT when tN = 0.

Under this hypothesis the following expression for Sis is derived:

Sis =
(

(sin(ω)/Sis
L )

2 + (cos(ω)/Sis
T )

2
)

−
1

2 (29)

2.2.3.2 Determination of c1 and c2 To calculate c1 and c2, consider a
unidirectional tensile stress σ22 = Y is

T applied in the transverse direction. The
failure index is equal to 1 and the fracture angle α is equal to 0. Imposing
these conditions in equation (26) results in:

c1 + c2 = 1 (30)

At failure (φMT = 1) the shear stress τ can be obtained from equation (26) as
a function of tN (τ = τ(tn)). The derivative of (26) with respect to the normal
stress reads:

∂φMT

∂tN
=

2τ

Sis2

∂τ

∂tN
+

c1
Y is
T

+
2c2 tN

Y is
T

2 (31)

Supposing now that tN = 0, equation (31) results in:
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∂φMT

∂tN

∣

∣

∣

∣

∣

tN=0

= −2τ η

Sis2
+

c1
Y is
T

(32)

whit η = − ∂τ
∂tN

∣

∣

∣

tN=0
.

The parameter η can be expressed in function of ηL and ηT . Considering the
following equation:

τ 2 = t2L + t2T (33)

and differentiating it with respect to the normal stress results:

2τ
∂τ

∂tN
= 2tL

∂tL
∂tN

+ 2tT
∂tT
∂tN

(34)

Using the definition of the friction coefficients (equation (6)), under the hy-
pothesis of tN = 0, equation (34) yields:

η = ηL tL/τ + ηT tT/τ (35)

To calculate the coefficient c1, consider the following stress state: tN = 0,
tT = 0 and tL = Sis

L . In this case the matrix should fail and the derivative of
equation (32) should be equal to zero because the failure index is a maximum.
Under these hypotheses η|tT=0 = ηL and equation (32) can be re-written as:

∂φMT

∂tN
= −2ηL

Sis
L

+
c1
Y is
T

= 0 =⇒ c1 =
2ηLY

is
T

Sis
L

(36)

Substituting the c1 in equation (30) c2 is obtained:

c1 + c2 = 1 =⇒ c2 = 1− 2 ηLY
is
T /Sis

L (37)

Therefore, the failure index given by equation (26) results in:

φMT =
(

τ

Sis

)2

+
2ηLtN
Sis
L

+

(

1− 2ηLY
is
T

Sis
L

)(

tN
Y is
T

)2

(38)

2.2.3.3 Hypothesis: σ22 = Y is
T . If σ22 = Y is

T with σij = 0 the material
must fail by transverse matrix cracking and the angle should be α = 0. The
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failure index under this hypothesis is φMT = 1 and the first derivative is equal
to ∂φMT /∂α = 0.

The second derivative of φMT reads:

∂2φMT

∂α2

∣

∣

∣

∣

∣

α=0

=
2Y is

T

2

Sis
T

2 − 4ηLY
is
T

Sis
L

− 4 (Sis
L − 2ηLY

is
T )

Sis
L

(39)

that should be negative if the fracture angle α corresponds to the maximum
of φMT . The second derivative is negative when:

(

−ηLS
is
T +

√

ηL2Sis
T

2
+ 2Sis

L
2
)

Sis
T

Sis
L

< Y is
T <

(

−ηLS
is
T −

√

ηL2Sis
T
2
+ 2Sis

L
2
)

Sis
T

Sis
L

(40)

For example, for carbon IM7/8552 equation (40) can be written as:

−129 < Y is
T < 86 [MPa] (41)

This means that in this case, for α = 0, φMT will not be a maximum. This is
clearly shown in Figure 6 that represents φMT as a function of α.

[Fig. 6 about here.]

2.2.4 Proposed Failure Criterion

The three-dimensional interaction criteria previously described cannot be used
to predict the failure of the matrix under general stress states because, for the
case of a simple transverse compression, they provide reasonable predictions
only if some relations between the material strengths are satisfied. These rela-
tions are not realistic for most structural composites where in-situ effects are
accounted for. Therefore, a new failure criterion is proposed here.

As previously shown, the failure criteria available in literature cannot be used
to predict failure when transverse tension σ22 (or σ33) is applied. In that case
there is a combination of tN and tT on the generic fracture plane and, cit-
ing [19], “if the resistance of the action plane against tT shear fracture would

be considerably smaller than that against transverse tension a different fracture

angle α = 0 would occur”.

In other words, when transverse tension is applied, the fracture angle for α 6= 0
will be function of Y is

T and Sis
T and, consequently, it will depend on the material

system.
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Therefore, it is appropriate to propose the following failure criterion for trans-
verse matrix cracking:

φMT =

(

tN
Sis
T

)2

+

(

tL
Sis
L

)2

+

(

tT
Sis
T

)2

+ λ

(

tN
Sis
T

)(

tL
Sis
L

)2

+ κ

(

tN
Sis
T

)

(42)

where tN , tT and tL are defined in equation (3).

It should be noted that the failure index proposed satisfy the following con-
ditions:

• φMT = 1 when tT = Sis
T and σij = 0;

• φMT = 1 when tL = Sis
L and σij = 0;

• φMT = φMC when tN = 0. In this case φMT = φMC = (tT/S
is
T )

2
+ (tL/S

is
L )

2
.

The parameter κ is determined imposing that φMT = 1 when tN = Y is
T . It

reads:

κ =
Sis
T

2 − Y is
T

2

Sis
T Y

is
T

(43)

The parameter λ is determined imposing that the failure indices for transverse
tension and compression should have continuous first derivative when tN = 0.
At failure (φMT = 1), the shear stress tL reads:

tL =

√

S is
T (S is

T + λ tN)
(

−tN
2 − κ tN S is

T + S is
T

2
)

S is
L

S is
T (S is

T + λ tN)
(44)

Taking the limit for tN → 0 of the derivative of equation (44) and imposing

that for both tension and compression ∂tL
∂tN

∣

∣

∣

tN=0
= −ηL, the following equation

is obtained:

λ = 2 ηLS
is
T /S

is
L − κ (45)

In the following it will be shown that the proposed failure criterion is able to
predict both the fracture plane and the strength. The following stress states
are considered:

• transverse tensile stress (σ22 = Y is
T , σ33 = Y is

T );
• longitudinal shear stress (τ12 = Sis

L ,τ13 = Sis
L );
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• transverse shear stress (τ23 = τ crit23 ).

2.2.4.1 Hypothesis 1 Considering σ22 = Y is
T the function φMT reads:

φMT = cos2(α) (46)

Figure 7 shows φMT as a function of α. The predicted fracture plane is correctly
computed as α = 0 and φMT = 1.

[Fig. 7 about here.]

2.2.4.2 Hypothesis 2 Considering σ33 = Y is
T the function φMT takes the

value:

φMT = sin2(α) (47)

Figure 8 shows φMT as a function of α. The predicted fracture plane is correctly
computed as α = π/2. The failure index is φMT = 1 at the fracture plane.

[Fig. 8 about here.]

2.2.4.3 Hypothesis 3 Considering τ12 = Sis
L the function φMT reads:

φMT = cos2(α) (48)

Figure 9 shows φMT as a function of α. The predicted fracture plane is correctly
computed as α = 0 and the failure index φMT = 1.

[Fig. 9 about here.]

2.2.4.4 Hypothesis 4 Considering τ13 = Sis
L the function φMT reads:

φMT = sin2(α) (49)

Figure 10 shows φMT as a function of α. The predicted fracture plane is cor-
rectly computed, α = π/2, and φMT = 1.

[Fig. 10 about here.]
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2.2.4.5 Hypothesis 5: τ23 = τ crit23 Assuming, without loss of generality
that τ crit23 > 0. The normal stress (equation (3)) yields:

tN > 0 if 0 < α < π/2

tN = 0 if α = π/2 (50)

tN < 0 if π/2 < α < π

Consequently, the failure index, φM reads:

φM =















τcrit
23

2
Y is

T
+τcrit

23
S is

T

2
sin(2α)−τcrit

23
Y is

T

2
sin(2α)

S is

T

2
Y is

T

if 0 < α < π/2

τcrit
23

2
(sin(α)−cos(α))2(sin(α)+cos(α))2

(−S is

T
+2 ηT cos(α) sin(α)τcrit

23 )
2 if π/2 < α < π

(51)

If τ23 is the only non-zero stress, there are three action planes on which only
one component of the stress tensor acts:

• on α = 0 and α = π/2 only tT is acting;
• on α = π/4 only tN (that corresponds to the principal tensile stress σI) is
acting.

These stresses (see figure 11) are all in magnitude equal to τ23. That means
that if Y is

T > Sis
T (Sis

T is the critical value) the fracture planes will be α = 0
and α = π/2, while if Sis

T > Y is
T (Y is

T is the critical value) the fracture plane
will be α = π/4.

[Fig. 11 about here.]

case 1: Y is
T > Sis

T

If Sis
T is the critical value, the failure index of equation (51) reads:

φM =











−2 sin(α) cos(α)Y is

T

2
+2 sin(α) cos(α)S is

T

2
+S is

T
Y is

T

S is

T
Y is

T

if 0 < α < π/2

− 4 cos4(α)−4 cos2(α)+1
−1+4 ηT cos(α) sin(α)−4 ηT 2 cos2(α)+4 ηT 2 cos4(α)

if π/2 < α < π
(52)

Figure 12 shows φM as a function of α. The predicted fracture planes are
correctly computed as α = 0, π/2 and the failure index takes in these points
the value of φM = 1.

[Fig. 12 about here.]
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case 2: Sis
T > Y is

T

If Y is
T is the critical value, the failure index of equation (51) reads:

φM =















−2 sin(α) cos(α)Y is

T

2
+2 sin(α) cos(α)S is

T

2
+Y is

T

2

S is

T

2 if 0 < α < π/2

−Y is

T

2
cos(4α)−Y is

T

2

−2S is

T

2
+4S is

T
ηT Y is

T
sin(2α)−ηT 2

Y is

T

2
+ηT 2Y is

T

2
cos(4α)

if π/2 < α < π
(53)

Figure 13 shows φM as a function of α. The predicted fracture plane is correctly
computed as α = π/4 and the failure index takes in these points the value of
φM = 1.

[Fig. 13 about here.]

2.2.4.6 Summary The criterion defined provides feasible predictions for
the different load cases analyses. In summary:

• if σ22 = Y is
T and σij = 0 the fracture plane is α = 0;

• if σ33 = Y is
T and σij = 0 the fracture plane is α = π/2;

• if τ12 = Sis
L and σij = 0 the fracture plane is α = 0;

• if τ13 = Sis
L and σij = 0 the fracture plane is α = π/2;

• if τ23 = τ crit23 and σij = 0:
· if τ crit23 = Sis

T the fracture plane is α = 0, π/2;
· if τ crit23 = Y is

T the fracture plane is α = π/4;

3 Criteria for longitudinal failure mechanisms

3.1 Longitudinal tension failure (σ11 > 0)

The function that predicts longitudinal tensile fracture is the maximum strain
criterion:

φLT = ε11/ε
T
1 (54)
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3.2 Longitudinal kinking failure (σ11 ≤ 0)

The three-dimensional stress states have relevant effects on the fiber kinking
failure mode. Two hypotheses for the mechanic of fiber kinking are normally
put forward:

• the first hypothesis, from Rosen, considers that kink bands are the final
result of micro-buckling of the fibers [20];

• the second hypothesis, from Argon, assumes that kink bands are triggered
by localized matrix failure in the vicinity of misaligned fibers [21].

Schultheisz and Waas [22] concluded that in structural composites kinking
is originated by local micro-structural defects that could trigger the kinking
phenomenon. The model proposed here is based on Argon’s hypothesis [21]
and on the subsequent developments by Dávila et al. [12] and Pinho et al.

[18].

Figure 14 shows the different coordinate systems and planes that are used in
the model. The coordinate system 123 is aligned with the material axes of the
composite: 1 represents the fiber direction, 2 and 3 the transverse directions.

The kinking plane is shown in Figure 14(a). The coordinate system associated
to the kinking plane is 1(θ)2(θ)3(θ) and it is obtained by the rotation of the
frame 123 around the axis 1 of an angle θ.

Figure 14(b) show the fibers on the kinking plane. The kinking-angle is ϕ
and the respective coordinate system is 1(ϕ)2(ϕ)3(ϕ) that can be obtained by
1(θ)2(θ)3(θ) after a rotation of an angle ϕ around the axis 3(θ). After this trans-
formation it is possible to use the failure criteria, equations (5) and (42), in
the misalignment coordinate system 1(ϕ)2(ϕ)3(ϕ) to predict fiber kinking.

Figure 14(c) shows the fracture angle with respect to the misalignment frame,
and identified by the angle α.

[Fig. 14 about here.]

Kinking failure can then be predicted using the matrix failure index in the
misalignment frame. This requires two rotations of the stress tensor.

We assume that the angle θ is a function of the stresses state. Supposing that
the kinking plane is defined by the shear stress that act on the 2-3 plane (see
Figure 15), the angle θ can be calculated as:

θ = arctan (τ13/τ12) (55)
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If both τ12 and τ13 are equal to zero the kinking angle can be calculated by the
maximum principal stress that acts on the transversly isotropic plane. In fact,
if τ

(θ)
23 6= 0 this will result in a movement perpendicular to the kinking-plane

contradicting the evidence that fibers kink on this plane [18]. The angle θ can
be obtained as:

θ =
1

2
arctan

(

2τ23
σ22 − σ33

)

(56)

[Fig. 15 about here.]

If a rotation of θ (counterclockwise) is applied the stress tensor in the new

coordinate system results σ
(θ) = R

(θ) · σ · R(θ)T where R
(θ) is the rotation

matrix defined as:

R
(θ) =















1 0 0

0 cos (θ) sin (θ)

0 − sin (θ) cos (θ)















(57)

Having found the fiber-kinking plane, the stresses should be rotated to the
misalignment frame. The stresses on this coordinate system can be written as:

σ
(ϕ) = R

(ϕ) · σ(θ) ·R(ϕ)T where R
(ϕ) is the rotation matrix defined as:

R
(ϕ) =















cos (ϕ) sin (ϕ) 0

− sin (ϕ) cos (ϕ) 0

0 0 1















(58)

Having defined the stress in the misalignment frame, the matrix failure mode
that triggers fiber kinking is predicted using equations (5) and (42). The com-
ponents of the traction on the fracture plane can be expressed as:

t
(ϕ)
N = cos2 (α)σ

(ϕ)
22 + 2 cos (α) sin (α) τ

(ϕ)
23 + sin2 (α)σ

(ϕ)
33 (59)

t
(ϕ)
T = − sin (α) cos (α)

(

σ
(ϕ)
22 − σ

(ϕ)
33

)

+
(

cos2 (α)− sin2 (α)
)

τ
(ϕ)
23 (60)

t
(ϕ)
L = cos (α) τ

(ϕ)
12 + sin (α) τ

(ϕ)
13 (61)

If t
(ϕ)
N < 0 the failure index becomes:
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φKMC =





t
(ϕ)
L

Sis
L − ηLt

(ϕ)
N





2

+





t
(ϕ)
T

Sis
T − ηT t

(ϕ)
N





2

(62)

while if t
(ϕ)
N ≥ 0 the failure index reads:

φKMT =





t
(ϕ)
N

Sis
T





2

+





t
(ϕ)
L

Sis
L





2

+





t
(ϕ)
T

Sis
T





2

+ λ





t
(ϕ)
N

Sis
T









t
(ϕ)
L

Sis
L





2

+ κ





t
(ϕ)
N

Sis
T



 (63)

where κ and λ are defined respectively in equations (43) and (45) .

The failure index for fiber kinking will take the value:

φK = max {max {φKMC} ,max {φKMT}} (64)

where max {φKMC} and max {φKMT} are the maximum values of equations
(62) and (63) with respect to α.

3.2.1 Determination of the angle ϕ

Dávila et al. [12] used a combination of Argon’s approach and LaRC02/03
failure criterion to calculate the angle ϕ for plane stress states. The stresses
in the misalignment coordinate frame of Figure 16 are:

σ
(m)
11 = cos2 (ϕ)σ11 + sin2 (ϕ)σ22 + 2 sin (ϕ) cos (ϕ) |τ12| (65)

σ
(m)
22 = sin2 (ϕ)σ11 + cos2 (ϕ)σ22 − 2 sin (ϕ) cos (ϕ) |τ12| (66)

τ
(m)
12 = sin (ϕ) cos (ϕ) (σ22 − σ11) +

(

cos2 (ϕ)− sin2 (ϕ)
)

|τ12| (67)

[Fig. 16 about here.]

Supposing that the material fails under axial compression the stresses take
the values σ11 = −XC , σ22 = τ12 = 0. Substituting these values, equations
(65) can be rewritten
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σ
(m)
11 = −cos2 (ϕC)XC (68)

σ
(m)
22 = −sin2 (ϕC)XC (69)

τ
(m)
12 = sin (ϕC) cos (ϕC)XC (70)

where ϕC is the angle at the failure when a pure axial compression is applied.

Substituting these stresses in the LaRC02/03 failure criterion it becomes:

Sis
L = XC

(

sin (ϕC) cos (ϕC)− ηL sin
2 (ϕC)

)

(71)

Equation (71) can be solved for ϕC obtaining

ϕC = arctan













1−
√

1− 4
(

Sis

L

XC
+ ηL

)

Sis

L

XC

2
(

Sis

L

XC
+ ηL

)













(72)

The total misalignment ϕ is taken as the sum of an initial constant misalign-
ment angle ϕ0 (that represents the manufacture defects and imperfections in
the materials) and a γm angle that is originated by the shear loading applied
and depends on the shear constitutive law τ = f (γm).

At failure under axial compression the additional angle γm becomes:

γmC = f−1
(

τ
(m)
12

)

= f−1 (sin (ϕC) cos (ϕC)XC) (73)

For a material that exhibits linear behavior in shear, τ
(m)
12 = G12γm equa-

tion (73) can be solved in close form obtaining

γmC =
sin (2ϕC)XC

2G12
≈ ϕCXC

G12
(74)

considering small angle approximation.

The initial misalignment angle can then obtained as:

ϕ0 = ϕC − γmC (75)
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For a generic loading the strain γm is obtained solving the equation f (γm) =

τ
(m)
12 that can be written as:

f (γm) = − sin (ϕ) cos (ϕ) (σ11 − σ22) +
(

cos2 (ϕ)− sin2 (ϕ)
)

|τ12 | (76)

Solving equation (76) for γm the angle ϕ becomes:

ϕ = sgn {τ12} (ϕ0 + γm) (77)

Assuming small angle approximations, equation (76) yields:

f (γm) = (ϕ0 + γm) (−σ11 + σ22) + |τ12| (78)

For a material that exhibits linear behavior the previous equation results in:

γm =
ϕ0G12 + |τ12|

G12 + σ11 − σ22
− ϕ0 (79)

Pinho et al. [18] suggested to apply the the equations (76- 79) considering the
stresses that acts on the kinking plane. Equation (76) becomes:

f (γm) = − sin (ϕ) cos (ϕ)
(

σ
(θ)
11 − σ

(θ)
22

)

+
(

cos2 (ϕ)− sin2 (ϕ)
) ∣

∣

∣τ
(θ)
12

∣

∣

∣ (80)

Finally for linear shear behavior equation (80) results:

γm =
ϕ0G12 +

∣

∣

∣τ
(θ)
12

∣

∣

∣

G12 + σ
(θ)
11 − σ

(θ)
22

− ϕ0 (81)

3.2.2 Alternative determination of ϕ

The calculation of an initial misalignment angle, ϕ0, causes an incompatibility
between equations (5),(42) and (62),(63). Therefore, a new methodology for
the calculation of the angle ϕ is proposed here.

The continuity of the failure envelope imposes that:

φKMC|σ11=0 = φMC (82)
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φKMT |σ11=0 = φMT (83)

Equations (82) and (83) are verified only when the initial misalignment angle,
ϕ0, is equal to zero.

Substituting ϕ0 = 0 in equation (75) results in:

ϕC = γmC (84)

where the angle ϕC is computed in equation (72). To compute γmC equation
(73) needs to be solved. For a material that exhibits a linear behavior in shear
it can be assumed:

τ
(m)
12 = χγm (85)

where χ is a micro-mechanical parameter associated with the creation of a
kink-band.

The parameter χ can be obtained solving the equation (84):

χ =
sin (2ϕC) XC

2ϕC

(86)

For a generic loading the strain γm is obtained solving the equation (76). The
angle ϕ becomes:

ϕ = sgn {τ12} γm (87)

Assuming small angle approximation, equation (76) can be expanded in a
Taylor series and several expressions of γm can be found as functions of the
boundary conditions.

This method is not feasible as a low-order Taylor series involving small angles
is too approximate while a higher-order series leads to complicated expressions
for γm; this will cause numerical instabilities in the calculation of γm.

It is easy and numerically more stable to solve equation (85) using, for exam-
ple, the Newton-Raphson method. Equation (85), in fact, can be expressed
as:

F = χγm +
1

2
(σ11 − σ22) sin (2γm)− |τ12| cos (2γm) (88)
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and its derivative with respect to γm is:

dF

dγm
= χ + (σ11 − σ22) cos (2γm) + 2 |τ12| sin (2γm) (89)

The angle γm can be computed with the recursive formula:

γmi+1 = γmi −
F |γm=γmi

dF

dγm

∣

∣

∣

∣

γm=γmi

(90)

4 Failure envelopes

The failure envelopes for several stress states are shown in Figures 17-19(c)
for the IM7/8552 carbon laminate. The material properties used are shown in
Table 1 1 .

[Table 1 about here.]

[Fig. 17 about here.]

Figure 17(a) shows τ12 as a function of σ22. As expected, when σ22 becomes
compressive the apparent shear strength increases. It should be noticed that
the envelope shows a continuity in the first derivative for tN = 0.

Figure 17(b) shows τ13 as a function of σ22. As τ13 and σ22 act on different
planes no interaction between them is noticed and the value of τ13 remains
always equal to or lower than Sis

L .

Figure 18(a) shows τ12 as a function of σ22 when the transverse stress, σ33, is
applied. The red envelopes are obtained when σ33 is positive and the blue ones
when it is negative. If σ33 > 0 the envelope remain constant when σ22 > 0. This
can be explained with the fact that there is no interaction between σ22 and
σ33 when both are positive. In this case the fracture plane is calculated using
the principal stress on the transverse plane (23). If σ22 < 0, an application
of a positive σ33 decreases the strength. In the case that a compressive σ33 is
applied the reduction of strength is noticed in tension (σ22 > 0) although in
compression (σ22 < 0) the compressive σ33 is beneficial.

1 It should be noted that in-situ strength are used; therefore, an embedded lamina
is considered.
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Figure 17(f) shows the σ11-σ22 failure envelope where are highlighted the re-
gions interested by different failure phenomena.

In the region characterized by kinking for matrix compression, the LaRC03
failure criterion predicts an increase of the apparent axial compressive strength
and this is confirmed by experimental results [23]. The criterion proposed does
not show an increase of the compressive strength if a biaxial compression is
applied. This seems to contradict the experimental evidence but it is not
the case. First of all, it should be noted that the fact that the compressive
stress does not increase can be explained remembering the definition of the
angle θ that identify the kink band plane. When σ22 becomes smaller than
zero (σ33 = 0), the angle of the principal stress changes from 0◦ to 90◦. If a
compression in 2 direction is applied this will not influence the fiber kinking
because the fiber will kink in the perpendicular plane. It is consistent with
the model defined having a constant value of the compressive strength when
σ22 < 0. However, if the loading condition or the manufacture of the material
can justify a predisposition of the material to kink with an angle θ = 0 (in 2
direction) the proposed failure criteria can detect the increasing of compressive
strength in the biaxial compression region.

Figure 18(e) shows the σ11-σ22 failure envelope when a transverse stress is
applied.

In this case, if both σ22 and σ33 are compressive the increase of the strength in
the biaxial compression region is shown. It should be noted that when trans-
verse compression is applied (σ33 < 0) the strength of the material decreases
in tension (σ22 > 0) and increases in compression (σ22 < 0). When transverse
tension is applied the compressive strength decreases (σ22 < 0) but no effects
are observed in the tensile strength (σ22 > 0). This is due to the fact that in
tension (σN > 0,τL = 0) the failure index is function of the principal stress on
the transversal plane (23), it means that there is not interaction between σ22

and σ33 because the failure depends only on the maximum value of σ22 or σ33.
In this case in fact σN = max {σ22, σ33}.

[Fig. 18 about here.]

Figure 19 shows the failures envelopes that relate σ33 with σ22 for different
values of the shear stresses τ12, τ13 and τ23.

As expected, when the shear stresses (τ12, τ13, τ23) are equal to zero the failure
envelope intercept the two axis in the points (YT , 0), (0, YT ), (−YC , 0) and
(0,−YC). Moreover, when σ22 and σ33 are both positive the failure envelope
remains correctly inside the region defined by σ22 ≤ 0 and σ33 ≤ 0. Finally,
it is noted that the failure envelopes are open in the region characterized by
hydrostatic pressure (σ22 = σ33 = −p).
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It should pointed out that the fact that the σ22-σ33 envelopes of Figure 19
are open in the region characterized by biaxial-compression does not mean
that the material does not fail, but rather that Puck’s criterion cannot pre-
dict failure. Experimentally, under high values of hydrostatic compression the
resins used in structural composites exhibit yielding and the same should oc-
cur in an unidirectional lamina when biaxial compression is applied in the
transverse plane (2-3). Presumably, if a yield criterion is used in combination
to the proposed failure criteria, the envelopes should be closed in the region
characterized by hydrostatic compression and should exhibit a more gradual
variation in the region characterized by hydrostatic tension.

[Fig. 19 about here.]

5 Verification Problems

5.1 Example 1: Relationship between Y is
C , ηL and Sis

L

In Section 2.1.1 the following relationship between Y is
C , ηL and Sis

L was found:

Y is
C = −Sis

L (2 cos2 (α0)− 1)

ηL cos2 (α0)
(91)

This relationship is written for the in-situ properties but has to be satisfied
also in the case of a unidirectional lamina.

Equation (91) must be satisfied for the structural composites commonly used.
Table 2 reports the material parameters of AS4/55A [27], E-Glass–LY556–
HT907–DY063 [10] and T800–3900-2 [28] unidirectional laminae.

[Table 2 about here.]

Figure 20 shows the τ12 as a function of σ22 for the materials considered. It is
observed that the transverse compressive stress is accurately predicted. This
is further highlighted in Table 3 that reports the measured SL, YC , ηL and the
value of YC calculated using equation (91).

[Fig. 20 about here.]

[Table 3 about here.]
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5.2 Example 2: σ22-τ12 failure envelopes

Figure 21 show the σ22-τ12 failure envelopes for four different materials: AS4/55A,
E-Glass/LY556/HT907/DY063, T800/3900-2, AS4/3501-6 and IM7/8552. The
material properties are reported in Tables 2, 4 and 5.

[Fig. 21 about here.]

Figure 22 shows the comparison between the experimental data obtained by
Swanson et al [27] and the prediction using LaRC03 [12], Hashin [29] and the
proposed criteria.

[Fig. 22 about here.]

For carbon-epoxy IM7/8552 both static and dynamic results are shown in
Figure 23. It is observed that the proposed model fits well the experimental
results obtained by Koerber et al [24] for both static and dynamic cases.

[Fig. 23 about here.]

[Table 4 about here.]

[Table 5 about here.]

5.3 Example 3: Compression and tension of thick unidirectional laminates

Koerber et al. [24] presented compression test based on ASTM Standard
D 695 of end-loaded thick specimens. The specimens are manufactured us-
ing IM7/8552 carbon-epoxy. The material parameters are shown in Table 5.

Two types of test are performed:

• transverse compression;
• off-axis compression at 0◦, 15◦, 30◦, 45◦, 60◦, 75◦.

The test are conducted statically and dynamically. The experimental and pre-
dicted relations between the off-axis angle and the peak compressive stress are
shown in Figure 24. Good agreement between the experimental results and the
model predictions is observed.

[Fig. 24 about here.]

Daniel et al. [26] performed off-axis tension and compression on AS4/3501-6
carbon unidirectional laminate. The material properties are shown in Table 4.
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Figure 25 shows the predicted relation between the off-axis angle and the
ultimate stresses. As before, an excellent agreement is observed.

[Fig. 25 about here.]

5.4 Example 4: σ11-σ22 failure envelopes

Hinton et al. [10] report biaxial tests of E-Glass/MY750 epoxy lamina. Table 6
shows the material properties of E-Glass/MY750 epoxy.

[Table 6 about here.]

The experimental data and the numerical results are shown in Figure 26.
It should be noted that some of the experimental results were affected by
experimental errors due to specimen buckling. These points are highlighted in
Figure 26. For the other points a good agreement between experiments and
the proposed model is observed.

[Fig. 26 about here.]

5.5 Example 5: σ11-τ12 failure envelopes

Hinton et al. [10] presented experimental test in T300/914C. The relevant
mechanical properties of the material are shown in Table 7.

Figure 27 shows the failure envelope generated by the proposed failure criteria
and the corresponding experimental data.

The dispersion presented by the data could be an effect of the different angles
of the kinking plane. The data shows a high dispersion and some results are
clearly affected by experimental errors (as those that present a shear strength
higher than Sis

L ). For this reason, it could be concluded that the comparison
between experiments and the proposed model is acceptable.

[Table 7 about here.]

[Fig. 27 about here.]
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5.6 Example 6: Influence of hydrostatic pressure

As previously discussed, the proposed model predicts higher strengths when
a hydrostatic pressure is applied to the composite material.

However, the prediction of the correct strength under high hydrostatic pressure
is a formidable task. In fact, hydrostatic pressure [23] has a very important
influence on the mechanical properties of composites:

• the elastic and the shear moduli increase. Depending on the resin used the
elastic and shear moduli are linear or bilinear functions of the hydrostatic
pressure. The bilinear behavior is considered an effect of the hydrostatic
pressure that shifts the sub-zero secondary glass transition temperature;

• some resins exhibit yielding when the applied pressure is greater than 200
MPa. As the yielding phenomenon is pressure-dependent a pressure-dependent
yield criterion should be used to predict this behavior. Pae [23] proposed
for the resin a criterion that consider the second invariant of the devia-
toric stress tensor, J2, a material constant αm, and the first invariant of the
stress tensor I1. Successively, this theory was extended to the anisotropic
materials.

Hine et al. [25] presented experimental results of a E-glass/MY750 lamina
tested in compression and in shear under hydrostatic confinement. The mate-
rial properties are shown in Table 6.

Figures 28(a)-28(b) show the compressive strength and the shear strength as
a function of the superimposed hydrostatic pressure of the thick lamina tested
under hydrostatic pressure.

[Fig. 28 about here.]

It can be concluded that the proposed criterion can address the increase in
the strength of composites under high values of the hidrostatic pressure. How-
ever, the correlation between predictions and experimental data appears to
be acceptable up to a pressure of 200MPa. It has been argued that this pres-
sure shifts the sub-zero secondary glass temperature at the room temperature
at which the test are conducted [23]. At this pressure, the elastic properties
change. Since this effect is not accounted for in the model, the experimental
data and the predictions differ for hydrostatic pressure higher than 200MPa.
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6 Conclusions

Based on the detailed examination of previously proposed failure criteria un-
der several stress states it is concluded that Puck’s failure criterion for trans-
verse compression provides accurate predictions of the first ply failure load.
However, the prediction of failure of plies embedded in multidirectional lami-
nates requires the use of the in-situ strengths. As a consequence, not only the
transverse tensile and shear strengths are in-situ properties: also the compres-
sive transverse strength is an in-situ property that should be calculated as a
function of the ply thickness.

It is also concluded that the accuracy of existing three-dimensional failure
criteria in the prediction of transverse tensile failure mechanisms depends
on relations between the material properties. When using in-situ strengths,
these relations are not always satisfied and the failure criteria results in wrong
predictions of both the first ply failure load and of the fracture angle. The
proposed failure criteria does not have such limitation: the fracture angle is
correctly predicted under simple stress states. In addition, a good agreement is
observed when comparing the predictions of the proposed failure criteria with
experimental data obtained for multi-axial stress states. The predictions of the
compressive strength of a composite subjected to high values of hydrostatic
pressure is accurate up to values of 200MPa of pressure. For higher values of
hydrostatic pressure the quality of the predictions is degraded, which means
that the future developments of the model should include the simulation of
the effect of the hydrostatic pressure on the elastic properties of the composite
material.

While the proposed failure criteria can be used to predict failure envelopes for
all conceivable stress states, it is clear that additional experimental work is re-
quired to validate the predictions obtained for multi-axial stress states that in-
clude out-of-plane components of the stress tensor. Some of the complex stress
states analyzed in this paper are clearly not easy to impose experimentally;
as an alternative, the suggested additional validation of the proposed criteria
for complex stress corresponds to the use of non-linear micro-mechanical finite
element models where the complex stress/strain states can be applied using
appropriate periodic boundary conditions.
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Fig. 1. Components of traction on the fracture plane
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Fig. 2. φMC as a function of α for IM-78552 (σ22 = −Y is
C )
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Fig. 3. φMC as a function of α (τ12 = Sis
L )
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Fig. 4. φMT as a function of α for different values of k (σ22 = −Y is
T )
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Fig. 5. φMT as a function of α for IM7/8552 (quadratic criterion)
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Fig. 6. Puck criterion: φMT as a function of α for IM7/8552 (σ22 = Y is
T )
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Fig. 7. φMT as a function of α (σ22 = Y is
T )
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Fig. 8. φMT as a function of α (σ33 = Y is
T )
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Fig. 9. φMT as a function of α (τ12 = Sis
L )
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Fig. 10. φMT as a function of α (τ13 = Sis
L )
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Fig. 11. Transverse shear stress τ23 and associated fracture planes.
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Fig. 12. φMT as a function of α (τ23 = Sis
T )
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Fig. 13. φMT as a function of α (τ23 = Y is
T )
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(a) (b) (c)

Fig. 14. Coordinate systems associated to fiber kinking
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Fig. 15. Kinking plane and involved shear stresses
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Fig. 17. 2D failure envelopes for IM/78552 carbon
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(g) σ11-σ22 for different values of τ23

-1500 -1000 -500 0 500 1000 1500 2000 2500
-250

-200

-150

-100

-50

0

50

100

150

200

-Yis
C

XT
-XC

Yis
T

0 0.2
0.4

0.6
0.8

Sis
L [M

Pa
]

 [MPa]

(h) σ11-σ22 for different values of τ13

Fig. 18. 3D failure envelopes for IM/78552 carbon
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Fig. 19. σ22-σ33 failure envelopes
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Fig. 21. σ22-τ12 failure envelopes for different materials
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Fig. 23. Static and dynamic test data for IM78552 unidirectional lamina [24]

56



0 10 20 30 40 50 60 70 80 90

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

C
om

pr
es

si
ve

 s
tre

ss
 [M

P
a]

Off-axis angle [°]

 exp (static)
 model (static)
 exp(dinamic)
 model (dinamic)

Fig. 24. Off-axis compression test of IM7/8552 carbon lamina [24]
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Fig. 25. Experimental results for AS4/3501-6 carbon unidirectional lamina [26]
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Fig. 26. σ11-σ22 failure envelope for E-Glass/MY750 epoxy lamina [10]
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Fig. 27. σ11-τ12 failure envelope for T300/914C lamina [10]
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Fig. 28. Effect of the hydrostatic pressure [25]
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XT XC Y is
T Y is

C Sis
L ηL α0 (◦)

2323.5 1200.1 160.2 198 130.2 0.5 53

Table 1
Mechanical properties of IM7/8552
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material AS4/55A E-Glass/LY556/HT907/DY063 T800/3900-2

ref. [27] [10] [28]

XT (MPa) – 1140 –

XC (MPa) – 570 –

YT (MPa) 27.0 35 48.8

YC (MPa) 91.8 130 201.7

SL (MPa) 66.0 72 100.9

α0 (◦) 53 53 53

Table 2
Material properties of investigated composites

64



material SL (MPa) ηL measured YC (MPa) calculated YC (MPa)

AS4/55A 51.3 0.43 91.8 90.2

E-Glass/LY556/HT907/DY063 66.0 0.41 130.0 123.0

T800/3900-2 100.9 0.36 201.7 212.0

Table 3
Material properties of investigated composites
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SL (MPa) ηL YT (MPa) XT (MPa) XC (MPa)

73.4 0.49 60.2 2323.5 1200.1

Table 4
Material properties of AS4/3501-6 unidirectional laminate [26]
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test type static dynamic

XT (MPa) 2323.5 –

XC (MPa) 1017.5 1428.0

YT (MPa) 160.2 –

SL (MPa) 89.6 122.3

ηL 0.38 0.41

α0 (◦) 55.3 56.3

Table 5
Material properties of IM78552 [24]
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XT (MPa) XC (MPa) YT (MPa) YC (MPa) SL (MPa) α0 (◦)

1280 800 40 145 73 53

Table 6
Material properties of E-Glass/MY750 epoxy [10]
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XT (MPa) XC (MPa) YT (MPa) YC (MPa) SL (MPa) α0 (◦)

1500 900 27 200 80 53

Table 7
Material properties of T300/914C [10]
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