8,676 research outputs found

    Motion around a Monopole + Ring system: I. Stability of Equatorial Circular Orbits vs Regularity of Three-dimensional Motion

    Get PDF
    We study the motion of test particles around a center of attraction represented by a monopole (with and without spheroidal deformation) surrounded by a ring, given as a superposition of Morgan & Morgan discs. We deal with two kinds of bounded orbits: (i) Equatorial circular orbits and (ii) general three-dimensional orbits. The first case provides a method to perform a linear stability analysis of these structures by studying the behavior of vertical and epicyclic frequencies as functions of the mass ratio, the size of the ring and/or the quadrupolar deformation. In the second case, we study the influence of these parameters in the regularity or chaoticity of motion. We find that there is a close connection between linear stability (or unstability) of equatorial circular orbits and regularity (or chaoticity) of the three-dimensional motion.Comment: 13 pages, 17 figures, to appear in MNRA

    Controlled Irradiative Formation of Penitentes

    Full text link
    Spike-shaped structures are produced by light-driven ablation in very different contexts. Penitentes 1-4 m high are common on Andean glaciers, where their formation changes glacier dynamics and hydrology. Laser ablation can produce cones 10-100 microns high with a variety of proposed applications in materials science. We report the first laboratory generation of centimeter-scale snow and ice penitentes. Systematically varying conditions allows identification of the essential parameters controlling the formation of ablation structures. We demonstrate that penitente initiation and coarsening requires cold temperatures, so that ablation leads to sublimation rather than melting. Once penitentes have formed, further growth of height can occur by melting. The penitentes intially appear as small structures (3 mm high) and grow by coarsening to 1-5 cm high. Our results are an important step towards understanding and controlling ablation morphologies.Comment: Accepted for publication in Physical Review Letter

    Nested polymerase chain reaction for amplification of the Cryptosporidium oocyst wall protein gene.

    Get PDF
    We developed a sensitive nested polymerase chain reaction procedure for the Cryptosporidium oocyst wall protein (COWP) gene. Amplification and genotyping were successful in 95.2% of 1,680 fecal samples, 77.6% by the unnested and 17.6% by the nested COWP procedure. The COWP gene was amplified from 2,128 fecal samples: 71 from livestock animals and 2,057 from humans. This series included 706 cases from seven drinking water-associated outbreaks and 51 cases from five swimming pool-associated outbreaks, as well as 1,300 sporadic cases

    Quantum information probes of charge fractionalization in large-N gauge theories

    Get PDF
    We study in detail various information theoretic quantities with the intent of distinguishing between different charged sectors in fractionalized states of large-N gauge theories. For concreteness, we focus on a simple holographic (2 + 1)-dimensional strongly coupled electron fluid whose charged states organize themselves into fractionalized and coherent patterns at sufficiently low temperatures. However, we expect that our results are quite generic and applicable to a wide range of systems, including non-holographic. The probes we consider include the entanglement entropy, mutual information, entanglement of purification and the butterfly velocity. The latter turns out to be particularly useful, given the universal connection between momentum and charge diffusion in the vicinity of a black hole horizon. The RT surfaces used to compute the above quantities, though, are largely insensitive to the electric flux in the bulk. To address this deficiency, we propose a generalized entanglement functional that is motivated through the Iyer-Wald formalism, applied to a gravity theory coupled to a U(1) gauge field. We argue that this functional gives rise to a coarse grained measure of entanglement in the boundary theory which is obtained by tracing over (part) of the fractionalized and cohesive charge degrees of freedom. Based on the above, we construct a candidate for an entropic c-function that accounts for the existence of bulk charges. We explore some of its general properties and their significance, and discuss how it can be used to efficiently account for charged degrees of freedom across different energy scales.Peer reviewe

    Holographic constraints on Bjorken hydrodynamics at finite coupling

    Get PDF
    In large-N-c conformal field theories with classical holographic duals, inverse coupling constant corrections are obtained by considering higher-derivative terms in the corresponding gravity theory. In this work, we use type IIB supergravity and bottom-up Gauss-Bonnet gravity to study the dynamics of boost-invariant Bjorken hydrodynamics at finite coupling. We analyze the time-dependent decay properties of non-local observables (scalar two-point functions and Wilson loops) probing the different models of Bjorken flow and show that they can be expressed generically in terms of a few field theory parameters. In addition, our computations provide an analytically quanti fiable probe of the coupling-dependent validity of hydrodynamics at early times in a simple model of heavyion collisions, which is an observable closely analogous to the hydrodynamization time of a quark-gluon plasma. We find that to third order in the hydrodynamic expansion, the convergence of hydrodynamics is improved and that generically, as expected from field theory considerations and recent holographic results, the applicability of hydrodynamics is delayed as the field theory coupling decreases.Peer reviewe

    Kinetic Theory of Collisionless Self-Gravitating Gases: II. Relativistic Corrections in Galactic Dynamics

    Get PDF
    In this paper we study the kinetic theory of many-particle astrophysical systems imposing axial symmetry and extending our previous analysis in Phys. Rev. D 83, 123007 (2011). Starting from a Newtonian model describing a collisionless self-gravitating gas, we develop a framework to include systematically the first general relativistic corrections to the matter distribution and gravitational potentials for general stationary systems. Then, we use our method to obtain particular solutions for the case of the Morgan & Morgan disks. The models obtained are fully analytical and correspond to the post-Newtonian generalizations of classical ones. We explore some properties of the models in order to estimate the importance of post-Newtonian corrections and we find that, contrary to the expectations, the main modifications appear far from the galaxy cores. As a by-product of this investigation we derive the corrected version of the tensor virial theorem. For stationary systems we recover the same result as in the Newtonian theory. However, for time dependent backgrounds we find that there is an extra piece that contributes to the variation of the inertia tensor.Comment: 30 pages, 8 figures. v2: Minor corrections and references added. Conclusions unchanged. v3: Version published in PR
    • …
    corecore