144 research outputs found

    Biomechanics of Sport Rehabilitation

    Get PDF
    It is well known that athletes are frequently injured due to the large stress present in most sport performances as well as accidents of different nature. In most cases such lesions involve muscles, ligaments, joint, bones and in several cases also peripheral nerves. In all these cases clinical treatments for restoring the athlete's capabilities are applied: casting, immobilisation, surgical intervention, traditional and specific rehabilitation procedures. A question of great relevance concerns how and when the complete motor recovery of the athlete has been reached, In fact the parameters which are normally used to assess the complete recovery of a normal subject are not sufficient to assess the recovery of a high level athlete, considering the complex mechanical demand which the musculo-skeletal apparatus must satisfy to reach the required performance. In other words, after an accident, the motor recovery accepted for a normal subject can be absolutely inadequate for an athlete. It is therefore necessary to identify new techniques to assess the efficiency of the rehabilitation procedures in the sport domain. Recent technological developments make it possible simultaneous measurements and processing of a set of biomechanical variables related to kinematics, kinetics. and EMG activity during high level performance, so that the deviation from normality can be assessed, where normality is considered the reference pattern of the athlete when expressing a good performance and in the best shape. Such a quantitative evaluation of motor efficiency in .athletes is also important considering that in many cases of accident is difficult to differentiate the role of pure physiological deficiencies from the psychological ones which are often consistent in limiting the possibility of reaching results previously obtained. In order to reach this goal, it IS important to define suitable protocols to monitor the motor apparatus behaviour when performing selected exercises. In this presentation, the methodological approach used to set up the aforementioned protocols will be discussed. Examples of application for the evaluation of basic motor actions (vertical jumping, running) and of specific sport actions (cycling, sprint start, tennis) be illustrated with particular reference to performance assessment and rehabilitative applications

    APPLICATION IN SPORTS OF THE "ELITE": A SYSTEM FOR REAL TIME PROCESSING OF TV SIGNALS

    Get PDF
    Competitive sport requires a deep engagement of the athletes that have to improve continuously physical and technical qualities with heavy programs of training. The help of the coaches is an important tool both to plan the training and to perform it correctly. The coach evaluates the work of the athlete with quantitative and qualitative inspections. Quantitatively he measures the actual performance or useful parameters (time, length, height) obtaining information on the total efficiency of the athlete. Qualitatively he analyzes the technical aspects of the sport. The analysis is done by a direct visual inspection or by video tape records. The final result is a synthesis of sensations that, through experience and knowledge, becomes practical suggestions. When the same analysis is quantitative, the intervention may he more complete as the coach is supported by powerful information: knowledge of quantities not easy or possible to be detected by visual inspection (velocities, accelerations, forces), accurate description of each phase of the movement, data storage allowing objective comparison in time

    Chest wall mechanics during pressure support ventilation

    Get PDF
    INTRODUCTION: During pressure support ventilation (PSV) a part of the breathing pattern is controlled by the patient, and synchronization of respiratory muscle action and the resulting chest wall kinematics is a valid indicator of the patient's adaptation to the ventilator. The aim of the present study was to analyze the effects of different PSV settings on ventilatory pattern, total and compartmental chest wall kinematics and dynamics, muscle pressures and work of breathing in patients with acute lung injury. METHOD: In nine patients four different levels of PSV (5, 10, 15 and 25 cmH(2)O) were randomly applied with the same level of positive end-expiratory pressure (10 cmH(2)O). Flow, airway opening, and oesophageal and gastric pressures were measured, and volume variations for the entire chest wall, the ribcage and abdominal compartments were recorded by opto-electronic plethysmography. The pressure and the work generated by the diaphragm, rib cage and abdominal muscles were determined using dynamic pressure-volume loops in the various phases of each respiratory cycle: pre-triggering, post-triggering with the patient's effort combining with the action of the ventilator, pressurization and expiration. The complete breathing pattern was measured and correlated with chest wall kinematics and dynamics. RESULTS: At the various levels of pressure support applied, minute ventilation was constant, with large variations in breathing frequency/ tidal volume ratio. At pressure support levels below 15 cmH(2)O the following increased: the pressure developed by the inspiratory muscles, the contribution of the rib cage compartment to the total tidal volume, the phase shift between rib cage and abdominal compartments, the post-inspiratory action of the inspiratory rib cage muscles, and the expiratory muscle activity. CONCLUSION: During PSV, the ventilatory pattern is very different at different levels of pressure support; in patients with acute lung injury pressure support greater than 10 cmH(2)O permits homogeneous recruitment of respiratory muscles, with resulting synchronous thoraco-abdominal expansion

    integration of enhanced optical tracking techniques and imaging in igrt

    Get PDF
    Patient setup/Optical tracking/IGRT/Treatment surveillance. In external beam radiotherapy, modern technologies for dynamic dose delivery and beam conformation provide high selectivity in radiation dose administration to the pathological volume. A comparable accuracy level is needed in the 3-D localization of tumor and organs at risk (OARs), in order to accomplish the planned dose distribution in the reality of each irradiation session. In-room imaging techniques for patient setup verification and tumor targeting may benefit of the combined daily use of optical tracking technologies, supported by techniques for the detection and compensation of organ motion events. Multiple solutions to enhance the use of optical tracking for the on-line correction of target localization uncertainties are described, with specific emphasis on the compensation of setup errors, breathing movements and non-rigid deformations. The final goal is the implementation of customized protocols where appropriate external landmarks, to be tracked in real-time by means of noninvasive optical devices, are selected as a function of inner target localization. The presented methodology features high accuracy in patient setup optimization, also providing a valuable tool for on-line patient surveillance, taking into account both breathing and deformation effects. The methodic application of optical tracking is put forward to represent a reliable and low cost procedure for the reduction of safety margins, once the patient-specific correlation between external landmarks and inner structures has been established. Therefore, the integration of optical tracking with in-room imaging devices is proposed as a way to gain higher confidence in the framework of Image Guided Radiation Therapy (IGRT) treatments

    Actual performance of mechanical ventilators in ICU: a multicentric quality control study.

    Get PDF
    Even if the performance of a given ventilator has been evaluated in the laboratory under very well controlled conditions, inappropriate maintenance and lack of long-term stability and accuracy of the ventilator sensors may lead to ventilation errors in actual clinical practice. The aim of this study was to evaluate the actual performances of ventilators during clinical routines. A resistance (7.69 cmH(2)O/L/s) - elastance (100 mL/cmH(2)O) test lung equipped with pressure, flow, and oxygen concentration sensors was connected to the Y-piece of all the mechanical ventilators available for patients in four intensive care units (ICUs; n = 66). Ventilators were set to volume-controlled ventilation with tidal volume = 600 mL, respiratory rate = 20 breaths/minute, positive end-expiratory pressure (PEEP) = 8 cmH(2)O, and oxygen fraction = 0.5. The signals from the sensors were recorded to compute the ventilation parameters. The average ± standard deviation and range (min-max) of the ventilatory parameters were the following: inspired tidal volume = 607 ± 36 (530-723) mL, expired tidal volume = 608 ± 36 (530-728) mL, peak pressure = 20.8 ± 2.3 (17.2-25.9) cmH(2)O, respiratory rate = 20.09 ± 0.35 (19.5-21.6) breaths/minute, PEEP = 8.43 ± 0.57 (7.26-10.8) cmH(2)O, oxygen fraction = 0.49 ± 0.014 (0.41-0.53). The more error-prone parameters were the ones related to the measure of flow. In several cases, the actual delivered mechanical ventilation was considerably different from the set one, suggesting the need for improving quality control procedures for these machines

    Rational engineering of a human anti-dengue antibody through experimentally validated computational docking

    Get PDF
    Antibodies play an increasing pivotal role in both basic research and the biopharmaceutical sector, therefore technology for characterizing and improving their properties through rational engineering is desirable. This is a difficult task thought to require high-resolution x-ray structures, which are not always available. We, instead, use a combination of solution NMR epitope mapping and computational docking to investigate the structure of a human antibody in complex with the four Dengue virus serotypes. Analysis of the resulting models allows us to design several antibody mutants altering its properties in a predictable manner, changing its binding selectivity and ultimately improving its ability to neutralize the virus by up to 40 fold. The successful rational design of antibody mutants is a testament to the accuracy achievable by combining experimental NMR epitope mapping with computational docking and to the possibility of applying it to study antibody/pathogen interactions

    Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus

    Get PDF
    Middle East Respiratory Syndrome coronavirus (MERS-CoV) causes severe respiratory disease with a high mortality rate. There is no licensed vaccine or antiviral for MERS. Here we isolated for the first time, to our knowledge, a potent MERS-CoV–neutralizing antibody from memory B cells of an infected individual. This antibody binds to a novel site on the viral Spike protein, neutralizes by interfering with the binding to the cellular receptor CD26, and is highly effective both in prophylaxis and in therapy in a relevant mouse model. This antibody can be developed for prophylaxis, for postexposure prophylaxis, or for the treatment of severe MERS-CoV infections

    Anti-chemokine antibodies after SARS-CoV-2 infection correlate with favorable disease course.

    Get PDF
    Infection by SARS-CoV-2 leads to diverse symptoms, which can persist for months. While antiviral antibodies are protective, those targeting interferons and other immune factors are associated with adverse COVID-19 outcomes. Instead, we discovered that antibodies against specific chemokines are omnipresent after COVID-19, associated with favorable disease, and predictive of lack of long COVID symptoms at one year post infection. Anti-chemokine antibodies are present also in HIV-1 and autoimmune disorders, but they target different chemokines than those in COVID-19. Finally, monoclonal antibodies derived from COVID- 19 convalescents that bind to the chemokine N-loop impair cell migration. Given the role of chemokines in orchestrating immune cell trafficking, naturally arising anti-chemokine antibodies associated with favorable COVID-19 may be beneficial by modulating the inflammatory response and thus bear therapeutic potential. One-Sentence Summary Naturally arising anti-chemokine antibodies associate with favorable COVID-19 and are predictive of lack of long COVID

    Intra-fraction setup variability: IR optical localization vs. X-ray imaging in a hypofractionated patient population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study is to investigate intra-fraction setup variability in hypo-fractionated cranial and body radiotherapy; this is achieved by means of integrated infrared optical localization and stereoscopic kV X-ray imaging.</p> <p>Method and Materials</p> <p>We analyzed data coming from 87 patients treated with hypo-fractionated radiotherapy at cranial and extra-cranial sites. Patient setup was realized through the ExacTrac X-ray 6D system (BrainLAB, Germany), consisting of 2 infrared TV cameras for external fiducial localization and X-ray imaging in double projection for image registration. Before irradiation, patients were pre-aligned relying on optical marker localization. Patient position was refined through the automatic matching of X-ray images to digitally reconstructed radiographs, providing 6 corrective parameters that were automatically applied using a robotic couch. Infrared patient localization and X-ray imaging were performed at the end of treatment, thus providing independent measures of intra-fraction motion.</p> <p>Results</p> <p>According to optical measurements, the size of intra-fraction motion was (<it>median ± quartile</it>) 0.3 ± 0.3 mm, 0.6 ± 0.6 mm, 0.7 ± 0.6 mm for cranial, abdominal and lung patients, respectively. X-ray image registration estimated larger intra-fraction motion, equal to 0.9 ± 0.8 mm, 1.3 ± 1.2 mm, 1.8 ± 2.2 mm, correspondingly.</p> <p>Conclusion</p> <p>Optical tracking highlighted negligible intra-fraction motion at both cranial and extra-cranial sites. The larger motion detected by X-ray image registration showed significant inter-patient variability, in contrast to infrared optical tracking measurement. Infrared localization is put forward as the optimal strategy to monitor intra-fraction motion, featuring robustness, flexibility and less invasivity with respect to X-ray based techniques.</p
    • …
    corecore