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Abstract

Antibodies play an increasing pivotal role in both basic research and the biopharmaceutical sector, therefore technology for
characterizing and improving their properties through rational engineering is desirable. This is a difficult task thought to
require high-resolution x-ray structures, which are not always available. We, instead, use a combination of solution NMR
epitope mapping and computational docking to investigate the structure of a human antibody in complex with the four
Dengue virus serotypes. Analysis of the resulting models allows us to design several antibody mutants altering its properties
in a predictable manner, changing its binding selectivity and ultimately improving its ability to neutralize the virus by up to
40 fold. The successful rational design of antibody mutants is a testament to the accuracy achievable by combining
experimental NMR epitope mapping with computational docking and to the possibility of applying it to study antibody/
pathogen interactions.
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Introduction

Improving our understanding of the structural rules governing

antibody/antigen interactions is expected, in the long run, to

accelerate vaccine development, since most modern vaccines aim

to elicit an antibody response, and to help us design better

antibodies for passive immunization or biotechnology applications

such as the production of bio-recognition elements for target

detection. As a proof of concept, we set forth to structurally

characterize the binding of one antibody to the four existing

Dengue Virus (DenV) serotypes and use this information to

rationally alter its immunological properties, eliminating cross-

reactivity and improving its ability to neutralize the virus.

DenV is responsible for 20,000 deaths and 500,000 hospitaliza-

tions annually [1], with economic impact rivaling that of malaria.

Its epidemic activity and geographic expansion are increasing as

climate changes, travel and urbanization create favorable condi-

tions for the mosquito spreading it [2]. No cure or vaccine is

currently available, mostly due to the presence of four serotypes

and to a poorly understood process called Antibody Dependent

Enhancement, where antibodies raised against a previous Dengue

infection facilitate subsequent infection by another serotype [3]. In

addition to its biomedical importance, the presence of related

serotypes and the fact that they are structurally well characterized

both at the protein and viral capsid level make DenV a good

model for the study of antibody/antigen interactions. Although

structural studies often concentrate on the complex between an

antibody and a single serotype, usually the one against which the

antibody is most effective, a comparison of the same antibody

bound to antigens that it can and cannot neutralize may, in fact,

teach us why it is only effective against some of them.

Having isolated a panel of human monoclonal antibodies from

a donor recovered from infection from Dengue Virus serotype 2

(DenV2) [4], we selected and characterized one that would: i) bind

all four DenV serotypes; ii) effectively neutralize only some of them

and iii) bind to the so-called DIII, a small ig-like domain part of the

E protein, whose homodimers are the main component of the viral

surface [5,6,7] and a dominant target for the human antibody

response against DenV [4,8,9,10].

We previously characterized the interaction between DV32.6,

an antibody with the above mentioned properties, and DenV4

[11]. This alone however, cannot explain why DV32.6 can

neutralize the other three serotypes given that the antibody binds

stronger to its epitope on DenV4 rather than DenV1 or DenV3. If

the antibody/antigen interaction were identical in all serotypes,

then the antibody should fail to neutralize DenV1 and DenV3 just

as it fails to neutralize DenV4.

Here we aim to elucidate the structure of DV32.6 in complex

with all the remaining DenV serotypes and exploit the differences

to rationally design mutated antibodies with i) selectively altered

binding specificity and ii) improved ability to neutralize the virus.
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We first use NMR epitope mapping to define the binding site of

DV32.6 on DIII of all four DenV serotypes. We then use this

information to filter computational predictions of the antibody/

antigen complexes. Analysis of the resulting three dimensional

structures proved sufficiently accurate for the rational design of

antibody mutants with selectively altered binding specificity or

improved neutralization properties.

Results

Antibody DV32.6 Binds to All Dengue Serotypes
DV32.6 is part of a panel of human monoclonal antibodies

isolated from a donor recovered from infection by DenV2 [4]. It

binds to DIII of all four DenV serotypes with KD 14569 nM for

DenV1; 760.2 nM for DenV2; 73616 nM for DenV3; 3467 nM

for DenV4 according to SPR (Figure 1). The ability of DV32.6 to

neutralize the virus was assessed by flow cytometry assays

measuring the number of cells infected by DenV vaccine strains

in the presence of different amounts of antibody. There is no direct

correlation between DIII binding affinity and neutralization: the

antibody is more efficient at neutralizing DenV2, DenV1 and

DenV3 despite binding more strongly to DIII of DenV4 (Figure

S1). Association and dissociation rates show no obvious correlation

to the neutralizing activity, either. The approximate concentration

of antibody required to neutralize 50% of the viral activity is 2 mg/

ml for DenV2, 3 mg/ml for DenV3, 4 mg/ml for DenV1 and

.74 mg/ml for DenV4. Incidentally, DV32.6 was isolated from

a patient recovered from DenV2 and is most effective against this

very serotype. Binding assays on isolated DIII allow us to compare

the binding affinity of the antibody for its epitope but the natural

target for the antibody is the full virus, where the surface of DIII is

partially covered by neighbouring protein domains. In contrast to

DIII binding, ELISA performed at 37uC on the full virus show

that binding to DenV4 is not stronger than to other serotypes

(Figure S1). No binding curve is obtained, instead, when

performing ELISA on the full virus at 4uC; this will be later

discussed in the context of the structural data.

NMR Epitope Mapping
Solution NMR spectroscopy was used to characterize, at the

residue level, the epitope (i.e. the region of the antigen that

interacts with the antibody) of DV32.6 on DIII from each DenV

serotype. In a so-called 15N-HSQC experiment, one of the

simplest NMR experiments, each protein residue generates an

individual signal. The position of these signals is sensitive to the

local chemical environment, so much so that 15N-HSQCs are

considered protein fingerprints. We exploit this property to

determine the epitope: when DV32.6 binds to DIII, interface

residues experience a different chemical environment and their

NMR signal changes as a consequence. By comparing the NMR

spectrum of DIII free or in complex with the antibody we can

identify which signals change. Knowing the assignments, i.e.

determining which signal belongs to which antigen residue, we can

therefore determine the residues affected by antibody binding

(Figure S2 and S3). NMR assignments are publicly available for

DIII of three serotypes [12,13,14]. We assigned DIII of DenV3

according to standard techniques. We utilize a purely qualitative

approach: if a signal changes position or disappears, then we know

that the residue generating such signal is affected by antibody

binding. In our experience, a quantitative analysis of the changes is

neither required nor satisfactory in the case of large and poorly

behaved complexes with low spectral quality. Nonetheless, the

accuracy attainable by qualitative analysis even in such compli-

cated cases is sufficient, as we have previously shown for a TCR/

pMHC complex (similar in many ways to our DIII/DV32.6

complexes) that was subsequently validated by an x-ray structure

[15] and in an RNA/protein complex later verified by an NMR

structure [16]. Furthermore, by relying on simple and sensitive
15N-HSQC experiments, or their TROSY equivalent, we can

adopt this approach even for the most difficult cases when more

sophisticated NMR approaches are not suitable. Such NMR

experiments may theoretically offer more information, but they fail

to do so due to lack of sensitivity in the case of our DIII/antibody

complexes.

The NMR signal of approximately 20% of the surface residues

of DIII is perturbed upon binding of DV32.6. No unassigned peak

shows chemical shift changes upon complex formation with the

exception of one signal that presumably belongs to Q316, in the

middle of the epitope. The epitope centers around residues 306–

325 and the antibody footprint shows only slight variation amongst

serotypes (Figure 2a and 2b). It includes residues conserved in all

serotypes, explaining why DV32.6 binds all four of them, and

residues that are not conserved, which are probably responsible for

the different binding and neutralization properties. However,

sequence or structural analysis of the epitope offers no information

on the antibody residues important for interaction. To further

characterize the binding interface we thus predicted the three-

dimensional structure of the complex between DV32.6 and DIII

by computational docking, guided and validated by the NMR

epitope mapping data.

Experimentally Validated Computational Docking
Computational docking predicts the structure of a multi-

molecular complex starting from the separated structures of the

individual components. Experimental structures of DIII from each

serotype are available [6,13,14,17] and were used for docking. We

predicted the structure of antibody DV32.6 by homology

modeling according to the canonical structure method [18].

Although docking a model, thus making a model of a model, is

known to generate problems in protein-protein docking, we and

others have clearly shown that this is not the case for antibodies

[11,18], since they can be modeled with high accuracy and

precision in the vast majority of cases and exceptions are readily

recognized [19]. Briefly, antibody antigen binding loops can adopt

a limited set of conformations constrained by loop length and

presence of specific amino acids at key positions [20]. Exploiting

these constraints yields highly reliable antibody models, except for

the H3 loop that can adopt highly variable conformations. We

thus generated multiple models of DV32.6 [11], differing mainly

in the conformation of the H3 and L3 loop and in the relative

position of the six antigen binding loops. In particular, the H3 loop

extends outwards in some of our models but presents a rather flat

interacting surface in others. The purpose is two-fold: on one hand

by using multiple models we increase the chances that at least one

of them is accurate; on the other hand the ensemble of

conformations may simulate the flexibility available to long

protein loops such as the H3 of DV32.6. We then docked each

antibody model independently to DIII with the program

RosettaDock [21] and validated the results as described in the

methods section. The difference between our approach and

‘‘ensemble docking’’ [22] protocols is that in the latter docks an

ensemble of multiple conformations and uses a scoring function to

select the best model. We, on the other hand, evaluate the docking

of each conformation according to its agreement with the

experimental data. We have previously shown that combining

NMR mapping and docking in this way significantly increases the

accuracy of computational docking [11]. In fact, the initial docking

search we performed failed to generate a so-called ‘‘scoring
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funnel’’, an ensemble of similar conformations significantly more

accurate than the others according to the docking algorithm.

Without our experimentally validated approach we would not be

able to discriminate amongst a dozen or so solutions recognized as

equally valid by the computational algorithm alone. Further

refinement of the structure in better agreement with the NMR

data (see methods) would often generate two scoring funnels, only

one of which was in agreement with the experimental data.

Interaction of Antibody DV32.6 with the Four Dengue
Serotypes

According to our NMR validated docking predictions, DV32.6

primarily recognizes DIII residues located on adjacent beta

strands, covering between 25 and 28 residues with a buried

surface area between 684 Å2 (DenV2) and 768 Å2 (DenV1). These

values are in line with those obtained from x-ray structures of

other antibodies against DIII. Antibody 2H12 has buried surface

area between 491 Å2 (DenV4) and 652 Å2 (DenV1). Antibody

1A1D-2 has a larger buried surface of 843 Å2 and antibody 4E11

buries between 758 Å2 (DenV3) and 894 Å2 (DenV1) [23,24,25].

The predicted interface of antibody DV32.6 is dominated by

electrostatic interactions and features several intermolecular

hydrogen bonds and salt bridges. All DIII residues predicted to

be at the interface by the selected docking solutions are also

affected by complex formation in the NMR epitope mapping

experiment.

K310, conserved in all serotypes, is at the center of the interface

and involved in multiple intermolecular contacts. The epitope has

several non-conserved residues, which are probably responsible for

the different binding and neutralization properties of DV32.6.

Indeed, residues 307, 309, 323, 325 and 327 differ among

serotypes and appear to be involved in antibody binding. Residue

309, for instance, is Glu, Val, Lys or Asp in DenV1 to DenV4,

respectively, and it may not be surprising that it has a different

effect on the antibody partner. Perhaps surprisingly, some

conserved DIII residues appear to have different antibody partners

in different serotypes: E311, for instance, interacts with either the

backbone of H-D102 (D102 of the antibody Heavy chain), L-S32

(S32 in the antibody Light chain) or L-S93. This may suggest

conformational plasticity or may very well reflect a limit in the

precision of the computational models. Even if the specific

interactions are wrong, however, the models provide an indication

of which residues are involved in intermolecular contacts. We may

not know if E311 interacts with H-D102, L-S32 or L-S93, for

instance, but we know that it is involved in electrostatic

interactions with the antibody. This level of information was

sufficient to successfully design antibody mutants.

Analyzing the predicted antibody interface (Figure 2c) shows

differences that could be exploited to selectively alter the binding

Figure 1. Antibody DV32.6 binds the four Dengue serotypes with different affinity. SPR sensorgrams showing association and dissociation
of DV32.6 to DIII of each Dengue serotype. The antibody was immobilized on the sensor surface, followed by injection of DIII at the concentrations
indicated in the figure. The line fitted to the experimental data and used to calculate the binding affinities is drawn in gray. KD values are 14569 nM
for DenV1; 760.2 nM for DenV2; 73616 nM for DenV3; 3467 nM for DenV4. Despite binding more weakly to DenV1 and DenV3 than DenV4, the
antibody neutralizes those serotypes better than DenV4.
doi:10.1371/journal.pone.0055561.g001

Antibody Engineering by NMR Validated Docking

PLOS ONE | www.plosone.org 3 February 2013 | Volume 8 | Issue 2 | e55561



properties: the light chain (L1, L2, L3) and H3 antigen binding

loops interact with every serotype; the H2 loop interacts only with

DenV1 and DenV3 and the H1 loop has no contact with any

serotype. Although the total interface area is similar, the light and

heavy chains equally contribute to it in DenV1 and DenV3,

whereas 80% of the interface is formed by the light chain in

DenV2 and DenV4.

Rational Antibody Engineering to Selectively Alter its
Binding Properties

By analyzing the three-dimensional models of the antibody/

DIII complexes we designed several antibody mutants with the

intent of further verifying our computational predictions, altering

the binding properties of the antibody and ultimately improving its

ability to neutralize the virus.

As a first test we aimed to modify the antibody without affecting

its binding to DIII, proving that we can identify and avoid critical

residues. Antibody sequence analysis can easily predict which

residues belong to antigen binding loops and may, therefore,

interact with the antigen. Our models go a step further and can

identify which of these residues are not directly involved in

intermolecular contacts and can thus be mutated without adverse

consequences. We thus selected and mutated a subset of such

residues in each of the three heavy chain antigen binding loops. As

predicted, all the following mutations in the antigen binding loops

didn’t alter the antibody binding properties: H-S104A (Figure 3);

H-T31A; H-S54Q; H-S103V; H-T106A. Binding assays for all the

mutants described in the manuscript are included as figures S4 and

S5.

To further validate our models we then aimed to abolish

antibody binding to all serotypes. Residues L-D50 and L-D51

are predicted to be at the center of the antibody/DenV

interface, forming an intermolecular network of hydrogen bonds

and salt bridges in all serotypes. If our models are correct,

disrupting this network should have a profound effect on the

interface. Indeed, the double mutant L-D50A/D51A completely

abolishes antibody binding (Figure 3). The same result is

obtained when mutating the nearby H-S105D, since the

Figure 2. Antibody DV32.6 interaction with the four Dengue serotypes. NMR epitope mapping results (a, b): residues whose NMR signal is
affected by antibody binding are indicated in red on the sequence (a) and on the surface representation (b) of DIII of each DenV serotype. Residues
for which no NMR information is available are coloured gray in the sequence. The discontinuous epitope shows slight variations amongst serotypes
both in sequence and structure, including some conserved residues and others that are not. The former explain why DV32.6 can bind to all four
serotypes, the latter are likely responsible for the different binding and neutralization properties. Computational docking results (c). Surface
representation of the antigen binding site of DV32.6. Antibody residues predicted to interact with DenV are shown in blue; light and heavy chains are
in light and dark gray, respectively. Both antibody chains contribute to the binding interface in DenV1 and DenV3 whereas only the light chain and
the H3 loop bind to DenV2 and DenV4. Some of the residues mutated to alter the antibody properties in a predictable way (see text) are indicated by
red circles and labelled on DenV1.
doi:10.1371/journal.pone.0055561.g002
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negative charge introduced interferes with the negatively

charged sidechain of L-D50.

Having shown that our approach can identify critical interface

residues, we tackled the much more difficult task of improving the

antibody properties. Generally speaking, increasing antibody

selectivity is a useful exercise to eliminate cross-reactivity with

undesired antigens or to design bio-recognition elements for

specific antigen subtypes. As a proof of concept, we altered the

interaction between DV32.6 and DenV, obtaining an antibody

mutant specific for DenV2 and another that binds only DenV2

and DenV4.

According to our models, residues H-D102/S103, belonging

to the H3 antigen binding loop, point away from the DenV2

antigen. Therefore, mutating them should have no effect on this

serotype. They are, instead, in close proximity of DenV4 and

DenV3. Finally, H-D102 is predicted to form an intermolecular

salt bridge in DenV1. In agreement with this prediction, the H-

D102A/S103A mutant binds DenV2 like the wild-type antibody

but it has severely reduced binding to all other serotypes

(Figure 3).

Since the antibody H2 loop is predicted to interact with DenV1

and DenV3 but not DenV2 and DenV4, we designed the H-S52A

mutant to prevent antibody binding to DenV1 and DenV3 while

leaving the other two serotypes unaltered (Figure 3). This mutant

agrees with the computational prediction that the antibody uses

different binding modes to interact with the serotypes as illustrated

in Figure 2c.

Rational Antibody Engineering to Improve the
Neutralization Properties

The aforementioned mutations are a testimony to our ability to

rationally alter the antibody binding properties and specificity.

Improving the ability of therapeutic products to protect from

infection is, however, the main goal of antibody engineering. As

a proof of concept, analysis of the predicted antibody/antigen

interfaces allowed us to design a mutated antibody 40 times more

efficient than the wild-type in neutralizing DenV1 and another

mutant more efficient against all serotypes, albeit to a lesser extent

(Figure 4).

Our models show that H-S52 is in close proximity to a positively

charged lysine sidechain in DenV1 (Figure 5). Introducing a nearby

negative charge should favor the formation of intermolecular salt

bridges, possibly resulting in improved neutralization properties.

Indeed, the H-S52D antibody is 40 times more efficient in

neutralizing DenV1; the estimated antibody concentration re-

quired to achieve 50% neutralization (EC50) is 0.1 mg/ml for

HS52D and 4.1 mg/ml for wild-type DV32.6 (Figure 4). SPR

indicates that the koff is identical to the wild-type while the kon

improves from 0.9560.0161024 to 4.860.461024 nM21s21,

resulting in a KD of 2862 nM versus 14569 nM. DenV4, where

H-S52D is also a slightly better neutralizer than the wild-type, has

a similar improvement in kon (1.560.161024 for the wild-type,

5.361.061024 nM21s21 for H-S52D) and the koff improves as

well (from 5.161.361023 to 0.4760.161023 s21) resulting in KD

of 0.960.04 nM for the mutant versus 3467 nM for the original

antibody.

Figure 3. Rational antibody engineering to selectively alter the binding specificity. Binding assays (ELISA) of representative mutants for
the four DenV serotypes are shown; higher y values correspond to increased antibody binding to DIII. The structural position of these mutants is
indicated in Figure 2c. Wild-type DV32.6 (black) binds to all serotypes and H-S104A does not alter its properties. The L-D50A/D51A mutant cannot
bind to any serotype. The H-D102A/S103A mutant binds to DenV2 and has severely limited binding to the other serotypes. The H-S52A mutant can
only bind to DenV2 and DenV4.
doi:10.1371/journal.pone.0055561.g003
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L-N27, instead, is predicted to be close to a positively charged

region in all serotypes (Figure 5) so introducing a negative charge

should favor the interaction with all of them. An N.E rather than

N.D mutation was introduced because a longer side chain would

get closer to the antigen without creating clashes, according to the

models. Indeed, the L-N27E mutant has improved neutralization

properties for all serotypes (Figure 4). The L-N27E mutant is 3

times more effective on DenV1, 6 on DenV2, 9 on DenV3 and 17

on DenV4 (ratios between the EC50 for wild-type and mutant

antibody). KD is 5 times stronger for DenV1, 23 times stronger for

DenV2, 4 times for DenV3 and 38 times for DenV4. The mutant

has improved Kon in all serotypes whereas the Koff is equal to the

wild type for DenV1 and DenV3. Unfortunately, the effects of the

H-S52D and L-N27E mutations are not additive; the double

mutant shows better neutralization only for DenV3. Apparently,

the interaction cannot tolerate the simultaneous introduction of

two negative charges on the other serotypes.

Discussion

Strategies for optimizing and improving antibody properties are

highly desirable, either to increase their efficacy or to alter their

binding specificity. Generally speaking, abolishing or altering

antibody binding to undesired antigens might confer selectivity to

an otherwise broadly reactive antibody, with practical uses in

avoiding cross-reactivity or designing specific biomarkers (or

biosensors). On the other hand, antibodies that can recognize

only selected serotypes on variable pathogens like Influenza or

Dengue may be engineered to become more broadly reactive.

Antibody optimization can be achieved by randomizing its

sequence with display technologies [26] or by structural analysis

and rational modification of the antibody/antigen interface. This

latter strategy is often neglected and generally thought to require

high resolution crystallographic structures [27], which are not

always available. As a proof of concept, we here show that

structure-based antibody engineering is feasible even without x-ray

information and can be achieved by computational methods

guided and validated by a limited set of rapidly obtained

experimental results. We have previously shown that NMR

mapping can provide an accurate representation of protein-

protein interfaces [15] and that this can greatly increase the

accuracy of computational docking by validating its results [11].

Here we move further ahead by showing that computational

models of antibody/antigen complexes allowed us to rationally

design antibody mutants that improve its properties by i)

disrupting binding only to selected serotypes and ii) improving

virus neutralization up to 40 fold.

Antibody DV32.6, isolated from the serum of a human donor

recovered from DenV2 infection, can efficiently neutralize three of

the four DenV serotypes but binds to all four in the so-called DIII,

the most variable domain of the protein forming the viral surface

Figure 4. Rational antibody engineering for improved virus neutralization properties.We designed two antibody mutants with the intent
of improving its neutralization properties. H-S52D (gray) neutralizes DenV1 40 times more efficiently than the wild-type (black) and L-N27E (violet) is
better than the wild-type in all serotypes, albeit to a lesser extent. Viral neutralization assays are shown; the amount of infected cells (y axis) decreases
at increasing antibody concentration (x axis). In comparison to the wild-type, a lower concentration of mutants is required to neutralize the same
amount of virus.
doi:10.1371/journal.pone.0055561.g004
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and the target of many potent antibodies described so far [4,23].

We identified the epitope of DV32.6 on each serotype at the

residue level with solution NMR spectroscopy and used this

information to guide and validate computational docking simula-

tions yielding three-dimensional models of the antibody/antigen

complexes. Visual analysis of these NMR validated computational

structures allowed us to design a total of 22 antibody mutants, only

4 of which did not have the predicted effect: a testament to the

accuracy of our approach that is unlikely to arise from a random

process. The mutants that did not behave as desired involved:

disruption of a predicted hydrogen bond that did not result in

a detectable loss of binding; a Ser to Gly substitution that

presumably altered the antibody structure and led to total loss of

binding; double substitutions that did not yield the cumulative

effect of the single mutants.

The Rosetta suite is probably the most successful software for

protein folding and engineering [28]. We thus utilized it to

complement our visual structural analysis. In particular, we

attempted to design antibody mutants that would increase the

binding affinity with the RosettaDesign [29] software. However,

the algorithm is biased towards the introduction of hydrophobic

residues at the intermolecular interface and fails to identify the

electrostatic mutations that yield increased virus neutralization in

our case. Unfortunately, we were not able to generate and test the

hydrophobic mutations suggested by RosettaDesign. Hydrophobic

antibodies are often problematic due to aggregation and lack of

specificity (‘‘sticky antibodies’’); moreover, their refolding from

inclusion bodies, if produced in E.Coli, tends to be very difficult.

Automated mutant design by the Rosetta software does not

identify the electrostatic mutations that improve the antibody

properties. Given the mutations, however, we wondered if

a docking algorithm would be able to provide a confirmation of

their efficacy. Judging this is not straightforward since a simple

energetic comparison between wt and mutant by the empiric

Rosetta scoring function is unlikely to provide meaningful results.

We, thus, decided to look for the presence of so-called ‘‘scoring

funnels’’. These are generated when the docking algorithm finds

a large number of similar structures with a pseudo-energy score

significantly better than the other structures. This results in

a funnel shape in a plot of docking score versus structural similarity

(RMSD from a reference structure). Scoring funnels are often

considered an indication of an accurate docking solution, although

exceptions are not uncommon, and in our experience are more

likely to happen when the binding affinity between docking

partners is high. In the case of the DV32.6 mutants there is no

scoring funnel, nor we could detect any other indicator that would

distinguish an effective mutation (e.g. L-N27E, which increases

antibody binding) from an ineffective one (e.g. L-D50A/D51A,

which abolishes binding). On the contrary, we had a scoring

funnel only when docking the L-D50A/D51A mutant.

Software for protein design has leaped forward in recent years

but it is not yet completely reliable. The advantage of human

visual structural analysis, we believe, is that it can detect plausible

intermolecular interactions those requirements may not be directly

satisfied by the model but could be met with limited structural

alterations. In an oversimplified example, an algorithm may

suggest a mutation to form an intermolecular hydrogen bond if the

two required chemical groups are within 3.5 Å; if the distance is

4.5 Å, however, it would fail to recognize the possibility. Human

analysis, on the other hand, might recognize that a relatively

minor structural rearrangement would bring the two chemical

groups within bonding distance. This rearrangement might

happen because proteins are flexible or, more simply, because

the position of the chemical groups cannot be ascertained with

high precision in the original structural models. In other words,

human structural analysis can overcome the uncertainty inherent

in computational models, provided that these are sufficiently

accurate to reliably identify interface residues.

Figure 5. Rational antibody engineering, a structural view. a) H-S52 is close to the positive sidechain of K400 in DenV1. Mutating it to the
negatively charged H-S52D favours the interaction and this mutant is 40 fold more effective than the wild type at neutralizing DenV1. The antibody is
shown in green and Denv1 in blue. b) DV32.6 is shown as green cartoon over the electrostatic surface of DenV3; positively charged surfaces are in
blue and negatively charged surfaces in red. L-N27 is close to a positive patch conserved in all serotypes. Introducing a negative charge (L-N27E)
favours the interaction, resulting in improved neutralization properties. The L-N27E substitution was preferred to L-N27D since the longer sidechain
was thought to bring the charged antibody moiety closer to DIII.
doi:10.1371/journal.pone.0055561.g005
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With this approach we produced DV32.6 antibody mutants that

could a) leave binding unaltered, proving that we can identify

residues that are not critical for interaction despite belonging to

the antigen binding loops or b) abolish binding to all serotypes.

More importantly, whereas wild-type DV32.6 binds to all four

DenV serotypes, we could design antibody mutants binding only

to DenV2 or to DenV2 and DenV4. Increasing antibody

specificity is valuable to eliminate unwanted cross-reactivity or to

design bio-recognition elements. If an antibody has therapeutic

purposes, however, one would seek to improve its neutralization

properties, which would have a beneficial effect on dosage and

therapy. It may be argued that if nature was not able to generate

a better antibody, then there is no reason why we should be.

However, individuals generate antibodies against a specific antigen

that may be different from the target of antibody engineering. In

the case of Dengue, for example, an antibody generated against

DenV2 might be rendered more effective against DenV1. Since

the individual from which the antibody was isolated had not been

exposed to DenV1, the immune system would not have been able

to optimize the antibody against this viral strain. Furthermore,

a better antibody may exist in the serum of an immunized

individual but it may simply fail to be successfully isolated.

As a proof of concept, we were able to engineer antibody

mutants up to 40 times more effective than the starting molecule at

neutralizing DenV. These results prove that even when high

resolution x-ray information cannot be easily obtained, antibody/

antigen complexes can be structurally characterized with sufficient

accuracy to allow a fine control of their binding specificity and

immunological properties. Although computational algorithms by

themselves often fail to discriminate inaccurate solutions [18], by

validating them with rapidly obtained NMR epitope mapping

results we could achieve accuracy sufficient for rational mutagen-

esis. It may be argued that sophisticated NMR experiments could

provide more information than the simple 15N-HSQC experi-

ments used in our approach. However, the very simplicity of such

experiments provides reasonably rapid results even in large, poorly

behaved biological molecules where other NMR experiments may

fail due to lack of sensitivity. In fact, even relatively low affinity

complexes that tend to escape successful crystallization can be

investigated by NMR mapping through HSQCs.

In addition to providing the basis for rational mutagenesis,

analysis of the structure of the DV32.6/DIII complexes may be

used to investigate the immunological properties of the antibody.

DV32.6, in fact, is a poor neutralizer of DenV4 despite binding

stronger to its epitope on DIII of DenV4 rather than DenV1 or

DenV3 (KD is 34 nM for DenV4, 74 nM for DenV3 and 146 nM

for DenV1). It may be argued that Kon or Koff, rather than KD,

might be more relevant for neutralization. However, there is no

linear correlation between those and neutralization, either. Koff is

better for DenV4 (5.161.361023 s21, 23.061.161023 s21 and

13.962.061023 s21 for DenV4, DenV3 and DenV1) and Kon is

similar (1.560.161024 nM21s21, 3.160.961024 nM21s21 and

0.9560.0161024 nM21s21 for DenV4, DenV3 and DenV1,

respectively).

Given the same epitope and identical conditions, stronger

binding should lead to stronger neutralization but this is not the

case for DV32.6. One possibility, therefore, is that DenV4 has

a different epitope from the other serotypes. NMR epitope

mapping does not indicate this. The vast majority of the epitope

residues are affected by antibody binding in all serotypes and the

biological significance of those that aren’t is not evident. The

different immunological profile is thus likely to arise from

differences not evident at the epitope level that manifest

themselves on the full viral particle, which the antibody needs to

recognize in order to neutralize the virus.

DV32.6 recognizes a discontinuous epitope centered around the

so-called A strand of DIII of all four Dengue serotypes. This region

is close to the intermolecular interface in the E protein

homodimers that form the surface of mature Dengue virus, with

DIII from one E protein contacting DII of the other unit [30]. On

the viral surface, the DV32.6 epitope is partly covered by DII

residues. Antibodies 1A1D-2 [23] and 4E11 [24] were similarly

shown to bind to partially inaccessible epitopes close to the

DV32.6 binding site. Cryo-EM data shows that1A1D-2 binds to

a virus conformation different from the one determined in the

absence of antibodies. It is likely that DV32.6 sports a similar

mechanism. In fact, steric clashes between DV32.6 and neigh-

bouring E proteins are present when superimposing our models to

the mature structure of the full virus, whereas no clash is detected

when superimposing our models to the structure of the virus in

complex with 1A1D-2. Presumably, structural dynamic of the viral

surface exposes the epitope for a time sufficient for antibody

binding. This theory is in agreement with ELISAs data on DV32.6

binding to the full virus: at 37uC there is sufficient dynamic

movement to uncover the epitope and allow DV32.6 binding; at

4uC, instead, the dynamic process is slowed or altogether halted,

the epitope is not made accessible for a sufficient amount of time

and DV32.6 cannot bind effectively anymore to the virus.

We previously noted that antibody binding to DenV4 is likely to

cause steric clashes on the viral surface, preventing efficient

neutralization. Why is this not the case for the other serotypes?

One possibility is that DV32.6 has less steric clashes on the virion

of DenV1 to 3 and that relieving them requires less extensive, thus

more likely, viral movements than DenV4. Another possibility is

that different viral strains have different extent of dynamic

movements on the viral surface. Indeed, antibody 2H12 was

recently shown to bind a partly inaccessible DIII epitope [25],

although not in the same exact region of DV32.6. Similarly to

DV32.6, 2H12 has the same binding affinity for DIII of all

serotypes (EC50 0.4 nM in ELISA binding assays) but cannot

neutralize DenV2. The authors, Midgley et al., suggest that the

DenV2 virion might be less dynamic than other serotypes [25],

resulting in less frequent exposure of the inaccessible antibody

epitope and less efficient neutralization. In agreement with this

interpretation, DV32.6 binds much stronger to DIII of DenV2

(KD 7 nM) than DenV1 (KD 145 nM), yet it neutralizes both

strains equally well (EC50 is 1.8 mg/ml for DenV2 and 4.1 mg/ml

for DenV1). The decreased binding affinity for DIII of DenV1

would be compensated by the additional rigidity of the virion of

DenV2, resulting in similar neutralization. The same considera-

tions hold true for the L-N27E antibody mutant, that neutralizes

DenV2 and DenV3 equally well despite binding 100 times more

strongly to DIII of DenV2 (KD 0.5 nM for DenV2 and 43 nM for

DenV3, EC50 0.3 mg/ml in both cases).

However, in our case DenV4 would be the least dynamic virion,

since the antibody binds strongly to DIII of this serotype but fails

to neutralize the virus, suggesting that the epitope is seldom

accessible on the viral surface. Midgley et al. do not describe

a similar property for DenV4, although this serotype is less

efficiently neutralized than DenV1 despite having similar binding

affinity. One difference between the previously reported work and

ours is that whereas both research teams use the same viral strains

for DenV1 and DenV2, there are two aminoacid differences in

DenV4 (L356F and N383D). Whether this is sufficient to justify

a different viral flexibility is debatable.

Overall, the structural flexibility of Dengue viral strains remains

largely unexplored. It is not clear, for instance, if it is exclusively an
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intrinsic property of the virion or if the antibodies can affect it.

Antibody binding to one E protein on the viral surface, for

instance, may distort the ordered structure of the virus and

provoke a chain reaction making the epitopes on the other E

proteins more readily accessible.

Conclusions
Structural characterization of antibody/antigen complexes

relies almost exclusively on x-ray information that may not always

be available. Computational docking is emerging as an affordable

alternative but it often fails to discriminate inaccurate solutions.

We have shown that this problem can be alleviated by rejecting

computational solutions that do not agree with a limited set of

rapidly obtained experimental data. These may arise from viral

escape mutants, peptide mapping or antigen mutagenesis; NMR

epitope mapping, however, is a powerful tool for the detailed

characterization of antibody binding sites with the potential to

identify the epitope of several antibodies in a matter of hours, once

assignment is available. We have shown that combining docking

and NMR epitope mapping yields results sufficiently accurate for

the rational modification of the antibody properties even in the

absence of high resolution x-ray information. For antibody

docking we have had good success with RosettaDock [21] but

other programs like HADDOCK [31] are equally good. We

believe that NMR validated computational docking can find

widespread use in the structural characterization of antibody/

antigen interactions, with implications for basic research, patent-

ing purposes, screening and selection of candidate molecules as

well as rational optimization of their binding and immunological

properties.

Materials and Methods

Isolation of Human Monoclonal Antibody
Briefly, memory B cells were isolated from the blood serum of

a donor recovered from DenV2 infection and immortalized with

EBV as previously described [4]. The study protocol was approved

by the Scientific and Ethical Committee of the Hospital for

Tropical Diseases and the Oxford Tropical Research Ethical

Committee. Written informed consent was provided. B cell clones

were then tested for specificity by staining of Dengue infected cells

and ELISA with recombinant E protein.

Antigen and Antibodies Production and Purification
The sequence of DIII from each serotype was identical to that of

the viral strains used for the binding and neutralization assays.

DIII domains from E protein of each Dengue serotype were

expressed in E. coli Rosetta cells with a pET21 vector (Novagen),

induced at OD600 = 0.7 and harvested after 3 hours. After

sonication and centrifugation, the pellet was repeatedly washed

and centrifuged in sodium phosphate buffer pH 7.2, 1 M NaCl,

1 M urea and 1% Triton X-100. The pellet was finally

resuspended in the same buffer with 8 M urea (buffer A).

Following addition of 0.2% PEI and centrifugation, 65%

ammonium sulphate was added to the supernatant. After

centrifugation, the pellet was resuspended in buffer A and dialyzed

for 3 days against 20 mM sodium phosphate buffer, 150 mM

NaCl, 200 mM arginine, adding small amounts of pellet every 8

hours. DIIIs were finally purified on a superdex-75 size exclusion

column (GE) with the buffer used for NMR and concentrated with

Vivaspin concentrators (Sartorius). 15N and 13C labeled DIIIs,

used for NMR experiments, were expressed in M9 minimal media

using aptly labeled nutrients (NH4Cl and glucose) as sole source of

nitrogen and carbon. DIIIs were proven to be correctly folded by

NMR 15N-HSQC experiments.

DV32.6 from B-cell culture supernatant was purified by

protein-A affinity chromatography followed by size-exclusion

according to standard protocols. The Fab fragments utilized for

NMR experiments were obtained by enzymatic digestion with

immobilized papain (Pierce) for 8 hours at 37uC, followed by

dialysis, protein-A affinity and finally size exclusion chromatogra-

phy against the NMR buffer. Recombinant wild-type antibody

and mutants were expressed in HEK293T cells and purified as

before. All samples were freshly prepared and mixed immediately

before the required experiments.

NMR Epitope Mapping
NMR epitope mapping experiments were conducted on the

complex between DIII of each serotype and either full DV32.6

(1:2 ratio to DIII) or its antigen binding fragment (Fab, 1:1 ratio to

DIII). Using the full antibody is more problematic for NMR due to

its larger size but the enzymatic digestion required to obtain the

Fab fragments comported a significant loss of material and, thus,

sample dilution. Use of Fab fragments tended to provide better

NMR results. TROSY versions or simple HSQCs experiments

offered comparable sensitivity, they were both tested on each

sample and the best one was chosen for the final experiment.

Typical acquisition time was 30 minutes for free DIIIs and 18–24

hours for the complex at a temperature of 298 K. Typical

concentration was around 0.25 mM in 20 mM NaPhosphate

pH6, 50 mM NaCl. In a typical experiment, a 15N-HSQC

spectrum of DIII from one serotype was recorded and a second

spectrum was recorded after addition of the Fab of DV32.6. The

two spectra were visually compared and residues with different

signal in the free and bound form were identified. Knowing the

assignment, i.e. which protein residue corresponds to each NMR

signal, DIII residues affected by DV32.6 binding were localized.

NMR assignments of DIII from DenV1, DenV2 and DenV4 are

publically available [12,13,14]. We assigned the backbone atoms

of DIII of DenV3 with HNCACB and 15N-NOESY-HSQC

experiments according to standard techniques. Spectra were

recorded on Bruker 750 MHz and 800 MHz instruments

equipped with cryoprobe and analyzed with the program Sparky

[32].

Antibody Modeling and Docking
DV32.6 was modelled according to the canonical structure

method with the programs PIGS [19] and RosettaAntibody [33]

as previously described [18]. 11 models with different H3 loop

conformations were generated and independently used for dock-

ing. The structure of DIII from all serotypes is publically available

[6,13,14,17] and was used for docking.

Docking was performed using RosettaDock 2.3 as previously

described [11]. In summary, a given antibody model was docked

to DIII of one serotype; amongst the thousands of computationally

generated complexes (typically 15,000), the one in better

agreement with the NMR epitope mapping data was selected

and further refined. If an antigen residue is in contact with the

antibody in a docking decoy and is also affected by antibody

binding in the NMR mapping experiment, then it is considered

a valid contact. If it is not affected by antibody binding according

to the NMR data then it is considered a violation. We select the

docking decoys that maximize the number of valid contacts while

avoiding violations. An antigen residue is defined ‘‘in contact’’ if

either its N or H backbone atoms are within 7 Å of any antibody

atom. This criterion proved to yield the most accurate results in

extensive docking back-calculations of protein-protein complexes
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with known experimental structure and available NMR mapping

information. By repeating the procedure for each of the 11

antibody starting models we obtained 11 putative complex

structures. Not all of them equally satisfied the NMR epitope

mapping data, so we finally retained only those complexes that

had no significant disagreement with the experimental data and

included all of them in the structural analysis. Computational

models were discarded if the number of violations was greater than

1 or if the antibody showed extensive contacts with the antigen

outside the canonical interaction regions (antigen binding loops

and neighboring area). Amongst the remaining structures, those

with a higher number of valid contacts were preferred. This was

repeated for DIII of each Dengue serotypes. A table summarizing

the docking and NMR epitope mapping results is offered as Table

S1.

Antibody Engineering
Antibody mutations were designed by visual analysis of the

experimentally validated computational models. Single-point

mutations were generated by site-directed mutagenesis of a vector

encoding the wild-type antibody sequence using the QuikChange

site-directed mutagenesis kit (Stratagene). The introduction of the

desired mutations was confirmed by DNA sequencing. The PCR

products were transformed into XL10-Blue supercompetent E.

coli cells (Stratagene) and the plasmids purified according to

standard techniques and transferred into HEK293T cells for

antibody production.

Binding and Neutralization Assays
All the neutralization and binding assays reported here were

conducted on the wild-type antibody purified from immortalized

B-cells isolated from the blood of a human donor, on the wild-type

antibody cloned in HEK293T cells and on the mutated antibodies.

Each measurement was conducted in duplicate, repeated 3 times

and reported as the average of the resulting values. Results are

normalized by considering as 100% the maximum point reached

by the wild-type antibody, included as a reference in all

experiments. EC50 were calculated as the midpoint transition in

the s shaped curves after line fitting according to standard

procedures.

Binding assays: 96-well ELISA plates were coated at 4uC with

recombinant DIII or purified virus from DenV1-4. After washing

and blocking, antibodies were added for 1 hr at 37uC. After

further wash, bound antibodies were revealed using goat anti-

human IgG coupled to alkaline phosphatase (Jackson Immunor-

esearch).

The ability of DV32.6 to neutralize the virus was assessed by

flow cytometry assays measuring the number of VERO or RAJI

cells infected by DenV vaccine strains in the presence of different

amounts of antibody [4]. Different antibody concentrations were

pre-incubated with DenV attenuated virus and used to infect

VERO or RAJI cells. The percentage of infected cells was

determined by fluorescence-activated cell sorting using standard

procedures, staining the cells with mouse mAb 4G2 (ATCC, D1-

4G2-4-15).

Surface Plasmon Resonance Binding Assays
The affinity of DV32.6 for DIII of the four Dengue serotypes

was determined at 25uC with a ProteOn XPR-36 instrument (Bio-

Rad). The antibodies (concentration 150 nM) were immobilized

on the surface of a GLM sensor chip through standard amine

coupling. DIII was injected at a flow rate of 100 ml/min (contact

time, 1 min) at different concentrations (300, 150, 50, 25 and

10 nM, running in parallel on separate channels); dissociation was

followed for 15 min. Analytes responses were corrected for

responses from buffer-only injection both on a channel with

antibody immobilized and on a channel with no antibody

immobilized. Curve fitting and data analysis were performed with

Bio-Rad ProteOn Manager software (version 3.1.0.6).

Supporting Information

Figure S1 DV32.6 has a stronger binding affinity for its
epitope on DIII of DenV4 than for the other serotypes
(panel a) but it is less efficient at neutralizing it (panel
c). a) Binding assay (ELISA) for wt DV32.6 on DIII. The antibody

concentration is on the x axis and increased y values correspond to

increased binding. DIII from each Dengue serotype was

immobilized on a surface in the presence of different amounts of

antibodies as described in the methods. Binding appears stronger

for DenV4 than other serotypes. The experiment was done in

duplicate and repeated 3 times. b) Binding assay (ELISA) for wt

DV32.6 on the full virus at 37uC. The purified virus from each

serotype was immobilized on a surface in the presence of different

amounts of antibodies. In contrast to the results of isolated DIII,

binding to DenV4 is not stronger than to other serotypes. In fact,

the binding curve does not reach plateaux in DenV4 at the tested

antibody concentrations. The experiment was done in triplicate. c)

Viral neutralization assay; the amount of infected cells (y axis)

decreases at increasing antibody concentration (x axis). A higher

amount of antibody is required to neutralize DenV4.

(TIF)

Figure S2 15N HSQC spectra of DIII of the four Dengue
serotypes free (blue) and in complex with antibody
DV32.6 (red). Residue V324 is affected by complex formation

and shows chemical shift changes in DenV1, DenV3 and DenV4

but not DenV2.

(TIF)

Figure S3 15N HSQC spectra of DIII of the four Dengue
serotypes free (blue) and in complex with antibody
DV32.6 (red). Residue K310 shows chemical shift changes upon

complex formation in DenV4 and DenV1 (smaller changes). The

peak corresponding to the bound state disappears in DenV2 and

DenV3, revealing that the residue is affected by antibody binding.

(TIF)

Figure S4 Binding assay (ELISA) for all the antibody
mutants designed to alter its properties in a predictable
manner and mentioned in the main text. The antibody

concentration is on the x axis; increased y values correspond to

increased binding. DIII from each Dengue serotype was

immobilized on a surface in the presence of different amounts of

antibodies as described.

(TIF)

Figure S5.

(TIF)

Table S1 NMR validation and docking results for the
DV32.6/DIII complexes chosen as representative for
each different antibody homology model used for dock-
ing (Model1 to Model10 and PIGS). Models in agreement

with the NMR epitope mapping data and chosen as final result for

the structural analysis (see main text) are highlighted in green. If an

antigen residue is in contact with the antibody in the computa-

tional model and is affected by complex formation in the NMR

epitope mapping experiments then it is considered a ‘‘valid

contact’’. If it is in contact in the computational model but is not

affected in the NMR epitope mapping experiment then it is
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considered a violation. The column ‘‘Valid-violations’’ indicates

these numbers for each model. ‘‘Rosetta score’’ is the score

calculated by the Rosetta-Dock scoring function, the lower the

better; it is not sufficient by itself to discriminate incorrect models.

‘‘Rosetta ranking’’ indicates the rank, by score, assigned by

Rosetta-Dock. A ranking of 1 means that the structure is the best

scoring amongst the thousands of decoys generated in a typical

docking run. Without NMR epitope mapping information one

would have to rely entirely on the computational scoring function.

In our case, instead, lower ranking models better satisfy the NMR

epitope mapping information.

(PDF)
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