114 research outputs found

    Fertilizer and Swine Manure Management Systems: Impacts on Crop Production and Nitrate-Nitrogen Leaching with Subsurface Drainage

    Get PDF
    Nutrient losses from row-crop land can cause nonpoint source water quality problems and “impaired waters.” Nitrogen (N) losses due to nitrate (NO3) leaching cause drinking water problems and possibly increase hypoxia (low oxygen) problems in the Gulf of Mexico. Phosphorus (P) losses can cause eutrophication problems in surface waters (lakes, streams, and reservoirs) in Iowa where algal blooms decrease oxygen, kill fish, and result in murky and bad tasting water. The U.S. EPA and the Iowa Department of Natural Resources are developing nutrient criteria/standards and implementation plans to address TMDL’s (Total Maximum Daily Load) and to improve the quality of impaired waters. These plans need to be based on sound information. To address the need for information about water quality impacts from the use of swine manure as a source of nutrients (N and P), a field study was funded by the Leopold Center for Sustainable Agriculture in 1999. Properly managed, swine manure can supply N and P needed by corn and soybeans. This study is being conducted at the Northeast Research Farm on 36 one-acre plots that are instrumented to monitor subsurface drainage for continuous water quality assessment

    Exploring Adaptive Management for Greater Sage Grouse in Northern Montana in the Face of Climate Change

    Get PDF
    A collaboration has begun in Montana among several state and federal agencies and non-governmental organizations interested in the management of greater sage grouse (Centrocercus urophasianus) in a > 5,000,000-ac (> 20,234-ha) landscape including the Charles M. Russell National Wildlife Refuge. The first step was conducting personal interviews with field biologists and managers in the general area to assess what management actions they are making. Using this information, we conducted an on-line survey to further identify those actions and how they are made. Finally, almost 40 managers and scientists met to discuss whether an adaptive management approach might be useful to gain an understanding of the interaction among habitats and management actions and how this will be affected by annual weather and climate patterns. A conceptual model of how these factors affect the life cycle of grouse has been drafted, and we are gathering comments on it. The intent is for that to be used as an ecological response model for assessing the effects of possible climate change scenarios. Future work will entail: (1) further delineation of management actions and the social networks associated with them, (2) building and evaluating a working model using rapid prototype methods, (3) conducting futures analyses of associated landscapes, (4) continuing to foster collaborative effort, and (5) working one-onone with managers to evaluate model and adaptive management applicability using such tools as LCMAP (Landscape Conservation Management and Analysis Portal)

    The Matsu Wheel: A Cloud-Based Framework for Efficient Analysis and Reanalysis of Earth Satellite Imagery

    Get PDF
    Project Matsu is a collaboration between the Open Commons Consortium and NASA focused on developing open source technology for cloud-based processing of Earth satellite imagery with practical applications to aid in natural disaster detection and relief. Project Matsu has developed an open source cloud-based infrastructure to process, analyze, and reanalyze large collections of hyperspectral satellite image data using OpenStack, Hadoop, MapReduce and related technologies. We describe a framework for efficient analysis of large amounts of data called the Matsu "Wheel." The Matsu Wheel is currently used to process incoming hyperspectral satellite data produced daily by NASA's Earth Observing-1 (EO-1) satellite. The framework allows batches of analytics, scanning for new data, to be applied to data as it flows in. In the Matsu Wheel, the data only need to be accessed and preprocessed once, regardless of the number or types of analytics, which can easily be slotted into the existing framework. The Matsu Wheel system provides a significantly more efficient use of computational resources over alternative methods when the data are large, have high-volume throughput, may require heavy preprocessing, and are typically used for many types of analysis. We also describe our preliminary Wheel analytics, including an anomaly detector for rare spectral signatures or thermal anomalies in hyperspectral data and a land cover classifier that can be used for water and flood detection. Each of these analytics can generate visual reports accessible via the web for the public and interested decision makers. The result products of the analytics are also made accessible through an Open Geospatial Compliant (OGC)-compliant Web Map Service (WMS) for further distribution. The Matsu Wheel allows many shared data services to be performed together to efficiently use resources for processing hyperspectral satellite image data and other, e.g., large environmental datasets that may be analyzed for many purposes

    Climatic history of the northeastern United States during the past 3000 years

    Get PDF
    Many ecosystem processes that influence Earth system feedbacks – vegetation growth, water and nutrient cycling, disturbance regimes – are strongly influenced by multidecadal- to millennial-scale climate variations that cannot be directly observed. Paleoclimate records provide information about these variations, forming the basis of our understanding and modeling of them. Fossil pollen records are abundant in the NE US, but cannot simultaneously provide information about paleoclimate and past vegetation in a modeling context because this leads to circular logic. If pollen data are used to constrain past vegetation changes, then the remaining paleoclimate archives in the northeastern US (NE US) are quite limited. Nonetheless, a growing number of diverse reconstructions have been developed but have not yet been examined together. Here we conduct a systematic review, assessment, and comparison of paleotemperature and paleohydrological proxies from the NE US for the last 3000 years. Regional temperature reconstructions (primarily summer) show a long-term cooling trend (1000 BCE–1700 CE) consistent with hemispheric-scale reconstructions, while hydroclimate data show gradually wetter conditions through the present day. Multiple proxies suggest that a prolonged, widespread drought occurred between 550 and 750 CE. Dry conditions are also evident during the Medieval Climate Anomaly, which was warmer and drier than the Little Ice Age and drier than today. There is some evidence for an acceleration of the longer-term wetting trend in the NE US during the past century; coupled with an abrupt shift from decreasing to increasing temperatures in the past century, these changes could have wide-ranging implications for species distributions, ecosystem dynamics, and extreme weather events. More work is needed to gather paleoclimate data in the NE US to make inter-proxy comparisons and to improve estimates of uncertainty in reconstructions

    TGF-β Inducible Early Gene 1 Regulates Osteoclast Differentiation and Survival by Mediating the NFATc1, AKT, and MEK/ERK Signaling Pathways

    Get PDF
    TGF-β Inducible Early Gene-1 (TIEG1) is a Krüppel-like transcription factor (KLF10) that was originally cloned from human osteoblasts as an early response gene to TGF-β treatment. As reported previously, TIEG1−/− mice have decreased cortical bone thickness and vertebral bone volume and have increased spacing between the trabeculae in the femoral head relative to wildtype controls. Here, we have investigated the role of TIEG1 in osteoclasts to further determine their potential role in mediating this phenotype. We have found that TIEG1−/− osteoclast precursors differentiated more slowly compared to wildtype precursors in vitro and high RANKL doses are able to overcome this defect. We also discovered that TIEG1−/− precursors exhibit defective RANKL-induced phosphorylation and accumulation of NFATc1 and the NFATc1 target gene DC-STAMP. Higher RANKL concentrations reversed defective NFATc1 signaling and restored differentiation. After differentiation, wildtype osteoclasts underwent apoptosis more quickly than TIEG1−/− osteoclasts. We observed increased AKT and MEK/ERK signaling pathway activation in TIEG1−/− osteoclasts, consistent with the roles of these kinases in promoting osteoclast survival. Adenoviral delivery of TIEG1 (AdTIEG1) to TIEG1−/− cells reversed the RANKL-induced NFATc1 signaling defect in TIEG1−/− precursors and eliminated the differentiation and apoptosis defects. Suppression of TIEG1 with siRNA in wildtype cells reduced differentiation and NFATc1 activation. Together, these data provide evidence that TIEG1 controls osteoclast differentiation by reducing NFATc1 pathway activation and reduces osteoclast survival by suppressing AKT and MEK/ERK signaling

    Natural disasters in the history of the eastern Turk empire

    Full text link
    This article analyzes the effect of climate extremes on the historical processes that took place (AD 536, 581, 601, 626 and 679) in the Eastern Turk Empire (AD 534–745) in Inner Asia. Climate extremes are sharp, strong and sometimes protracted periods of cooling and drought caused by volcanic eruptions that in this case resulted in a negative effect on the economy of a nomadic society and were often accompanied by famine and illness. In fact, many of these natural catastrophes coincided with the Black Death pandemics among the Eastern Turks and the Chinese living in the north of China. The Turk Empire can be split into several chronological periods during which significant events that led to changes in the course of history of the nomadic state took place: AD 534–545—the rise of the Turk Empire; AD 581–583—the division of the Turk Empire into theWestern and the Eastern Empires; AD 601–603—the rise of Qimin Qaghan; AD 627–630—the Eastern Turks are conquered by China; AD 679–687—the second rise of the Eastern Turk Empire. The research shows that there is clearly-discernable interplay between important historical events and climate extremes in the history of the Turk Empire. This interplay has led us to the conclusion that the climatic factor did have an impact on the historical processes that took place in the eastern part of Inner Asia, especially on the territories with a nomadic economy. © The Author(s) 2019

    Cytotoxic and Pathogenic Properties of Klebsiella oxytoca Isolated from Laboratory Animals

    Get PDF
    Klebsiella oxytoca is an opportunistic pathogen implicated in various clinical diseases in animals and humans. Studies suggest that in humans K. oxytoca exerts its pathogenicity in part through a cytotoxin. However, cytotoxin production in animal isolates of K. oxytoca and its pathogenic properties have not been characterized. Furthermore, neither the identity of the toxin nor a complete repertoire of genes involved in K. oxytoca pathogenesis have been fully elucidated. Here, we showed that several animal isolates of K. oxytoca, including the clinical isolates, produced secreted products in bacterial culture supernatant that display cytotoxicity on HEp-2 and HeLa cells, indicating the ability to produce cytotoxin. Cytotoxin production appears to be regulated by the environment, and soy based product was found to have a strong toxin induction property. The toxin was identified, by liquid chromatography-mass spectrometry and NMR spectroscopy, as low molecular weight heat labile benzodiazepine, tilivalline, previously shown to cause cytotoxicity in several cell lines, including mouse L1210 leukemic cells. Genome sequencing and analyses of a cytotoxin positive K. oxytoca strain isolated from an abscess of a mouse, identified genes previously shown to promote pathogenesis in other enteric bacterial pathogens including ecotin, several genes encoding for type IV and type VI secretion systems, and proteins that show sequence similarity to known bacterial toxins including cholera toxin. To our knowledge, these results demonstrate for the first time, that animal isolates of K. oxytoca, produces a cytotoxin, and that cytotoxin production is under strict environmental regulation. We also confirmed tilivalline as the cytotoxin present in animal K. oxytoca strains. These findings, along with the discovery of a repertoire of genes with virulence potential, provide important insights into the pathogenesis of K. oxytoca. As a novel diagnostic tool, tilivalline may serve as a biomarker for K oxytoca-induced cytotoxicity in humans and animals through detection in various samples from food to diseased samples using LC-MS/MS. Induction of K. oxytoca cytotoxin by consumption of soy may be in part involved in the pathogenesis of gastrointestinal disease
    corecore