771 research outputs found
The 3-Dimensional q-Deformed Harmonic Oscillator and Magic Numbers of Alkali Metal Clusters
Magic numbers predicted by a 3-dimensional q-deformed harmonic oscillator
with Uq(3) > SOq(3) symmetry are compared to experimental data for alkali metal
clusters, as well as to theoretical predictions of jellium models, Woods--Saxon
and wine bottle potentials, and to the classification scheme using the 3n+l
pseudo quantum number. The 3-dimensional q-deformed harmonic oscillator
correctly predicts all experimentally observed magic numbers up to 1500 (which
is the expected limit of validity for theories based on the filling of
electronic shells), thus indicating that Uq(3), which is a nonlinear extension
of the U(3) symmetry of the spherical (3-dimensional isotropic) harmonic
oscillator, is a good candidate for being the symmetry of systems of alkali
metal clusters.Comment: 13 pages, LaTe
Serologic Evidence of Various Arboviruses Detected in White Tailed Deer (\u3ci\u3eOdocoileus virginianus\u3c/i\u3e) in the United States
White-tailed deer (Odocoileus virginianus) are an abundant mammal with a wide geographic distribution in the United States, which make them good sentinels for monitoring arboviral activity across the country. Exposure to various arboviruses has been detected in white-tailed deer, typically in conjunction with another diagnostic finding. To better assess the exposure of white-tailed deer to seven arboviruses, wetested 1,508 sera collected from 2010 to 2016 for antibodies to eastern equine encephalitis (2.5%), Powassan (4.2%), St. Louis encephalitis, (3.7%), West Nile (6.0%), Maguari (19.4%), La Crosse (30.3%), and bluetongue (7.8%) viruses. At least one arbovirus was detected in 51.3%, and exposure to more than one arbovirus was identified in 17.6% of the white-tailed deer sampled
Influence of heart rate, blood pressure, and beta-blocker dose on outcome and the differences in outcome between carvedilol and metoprolol tartrate in patients with chronic heart failure: results from the COMET trial.
AIMS:
We studied the influence of heart rate (HR), systolic blood pressure (SBP), and beta-blocker dose on outcome in the 2599 out of 3029 patients in Carvedilol Or Metoprolol European Trial (COMET) who were alive and on study drug at 4 months after randomization (time of first visit on maintenance therapy).
METHODS AND RESULTS:
By multivariable analysis, baseline HR, baseline SBP, and their change after 4 months were not independently related to subsequent outcome. In a multivariable analysis including clinical variables, HR above and SBP below the median value achieved at 4 months predicted subsequent increased mortality [relative risk (RR) for HR>68 b.p.m. 1.333; 95% confidence intervals (CI) 1.152-1.542; P120 mmHg 0.78; 95% CI 0.671-0.907; P<0.0013]. Achieving target beta-blocker dose was associated with a better outcome (RR 0.779; 95% CI 0.662-0.916; P<0.0025). The superiority of carvedilol as compared to metoprolol tartrate was maintained in a multivariable model (RR 0.767; 95% CI 0.663-0.887; P=0.0004) and there was no interaction with HR, SBP, or beta-blocker dose.
CONCLUSION:
Beta-blocker dose, HR, and SBP achieved during beta-blocker therapy have independent prognostic value in heart failure. None of these factors influenced the beneficial effects of carvedilol when compared with metoprolol tartrate at the pre-defined target doses used in COMET
Vortex reflection at boundaries of Josephson-junction arrays
We study the propagation properties of a single vortex in square
Josephson-junction arrays (JJA) with free boundaries and subject to an applied
dc current. We model the dynamics of the JJA by the resistively and
capacitively shunted junction (RCSJ) equations. For zero Stewart-McCumber
parameter we find that the vortex always escapes from the array when
it gets to the boundary. For and for low currents we find
that the vortex escapes, while for larger currents the vortex is reflected as
an antivortex at one edge and the antivortex as a vortex at the other, leading
to a stationary oscillatory state and to a non-zero time-averaged voltage. The
escape and the reflection of a vortex at the array edges are qualitatively
explained in terms of a coarse-grained model of a vortex interacting
logarithmically with its image. We also discuss the case when the free
boundaries are at degrees with respect to the direction of the vortex
motion. Finally, we discuss the effect of self-induced magnetic fields by
taking into account the full-range inductance matrix of the array, and find
qualitatively equivalent results.Comment: 14 pages RevTex, 9 Postscript figure
Anthropogenic Space Weather
Anthropogenic effects on the space environment started in the late 19th
century and reached their peak in the 1960s when high-altitude nuclear
explosions were carried out by the USA and the Soviet Union. These explosions
created artificial radiation belts near Earth that resulted in major damages to
several satellites. Another, unexpected impact of the high-altitude nuclear
tests was the electromagnetic pulse (EMP) that can have devastating effects
over a large geographic area (as large as the continental United States). Other
anthropogenic impacts on the space environment include chemical release ex-
periments, high-frequency wave heating of the ionosphere and the interaction of
VLF waves with the radiation belts. This paper reviews the fundamental physical
process behind these phenomena and discusses the observations of their impacts.Comment: 71 pages, 35 figure
A Conformally Invariant Holographic Two-Point Function on the Berger Sphere
We apply our previous work on Green's functions for the four-dimensional
quaternionic Taub-NUT manifold to obtain a scalar two-point function on the
homogeneously squashed three-sphere (otherwise known as the Berger sphere),
which lies at its conformal infinity. Using basic notions from conformal
geometry and the theory of boundary value problems, in particular the
Dirichlet-to-Robin operator, we establish that our two-point correlation
function is conformally invariant and corresponds to a boundary operator of
conformal dimension one. It is plausible that the methods we use could have
more general applications in an AdS/CFT context.Comment: 1+49 pages, no figures. v2: Several typos correcte
Single Channel Music Sound Separation Based on Spectrogram Decomposition and Note Classification
Separating multiple music sources from a single channel mixture is a challenging problem. We present a new approach to this problem based on non-negative matrix factorization (NMF) and note classification, assuming that the instruments used to play the sound signals are known a priori. The spectrogram of the mixture signal is first decomposed into building components (musical notes) using an NMF algorithm. The Mel frequency cepstrum coefficients (MFCCs) of both the decomposed components and the signals in the training dataset are extracted. The mean squared errors (MSEs) between the MFCC feature space of the decomposed music component and those of the training signals are used as the similarity measures for the decomposed music notes. The notes are then labelled to the corresponding type of instruments by the K nearest neighbors (K-NN) classification algorithm based on the MSEs. Finally, the source signals are reconstructed from the classified notes and the weighting matrices obtained from the NMF algorithm. Simulations are provided to show the performance of the proposed system. © 2011 Springer-Verlag Berlin Heidelberg
Sapling size influences shade tolerance ranking among southern boreal tree species
1 Traditional rankings of shade tolerance of trees make little reference to individual size. However, greater respiratory loads with increasing sapling size imply that larger individuals will be less able to tolerate shade than smaller individuals of the same species and that there may be shifts among species in shade tolerance with size. 2 We tested this hypothesis using maximum likelihood estimation to develop individual-tree-based models of the probability of mortality as a function of recent growth rate for seven species: trembling aspen, paper birch, yellow birch, mountain maple, white spruce, balsam fir and eastern white cedar. 3 Shade tolerance of small individuals, as quantified by risk of mortality at low growth, was mostly consistent with traditional shade tolerance rankings such that cedar > balsam fir > white spruce > yellow birch > mountain maple = paper birch > aspen. 4 Differences in growth-dependent mortality were greatest between species in the smallest size classes. With increasing size, a reduced tolerance to shade was observed for all species except trembling aspen and thus species tended to converge in shade tolerance with size. At a given level of radial growth larger trees, apart from aspen, had a higher probability of mortality than smaller trees. 5 Successional processes associated with shade tolerance may thus be most important in the seedling stage and decrease with ontogeny
- …