9,881 research outputs found

    A repulsive reference potential reproducing the dynamics of a liquid with attractions

    Get PDF
    A well-known result of liquid state theory is that the structure of dense fluids is mainly determined by repulsive forces. The WCA potential, which cuts intermolecular potentials at their minima, is therefore often used as a reference. However, this reference gives quite wrong results for the viscous dynamics of the Kob-Andersen binary Lennard-Jones liquid [Berthier and Tarjus, Phys. Rev. Lett. 103, 170601 (2009)]. We show that repulsive inverse-power law potentials provide a useful reference for this liquid by reproducing its structure, dynamics, and isochoric heat capacity

    The [Y/Mg] clock works for evolved solar metallicity stars

    Get PDF
    Previously [Y/Mg] has been proven to be an age indicator for solar twins. Here, we investigate if this relation also holds for helium-core-burning stars of solar metallicity. High resolution and high signal-to-noise ratio (S/N) spectroscopic data of stars in the helium-core-burning phase have been obtained with the FIES spectrograph on the NOT 2.56m telescope and the HIRES spectrograph on the Keck I 10 m telescope. They have been analyzed to determine the chemical abundances of four open clusters with close to solar metallicity; NGC 6811, NGC 6819, M67 and NGC 188. The abundances are derived from equivalent widths of spectral lines using ATLAS9 model atmospheres with parameters determined from the excitation and ionization balance of Fe lines. Results from asteroseismology and binary studies were used as priors on the atmospheric parameters, where especially the logg\log g is determined to much higher precision than what is possible with spectroscopy. It is confirmed that the four open clusters are close to solar metallicity and they follow the [Y/Mg] vs. age trend previously found for solar twins. The [Y/Mg] vs. age clock also works for giant stars in the helium-core burning phase, which vastly increases the possibilities to estimate the age of stars not only in the solar neighborhood, but in large parts of the Galaxy, due to the brighter nature of evolved stars compared to dwarfs.Comment: 5 pages, 3 figures, accepted for publication as a Letter to A&

    Correlation-induced conductance suppression at level degeneracy in a quantum dot

    Get PDF
    The large, level-dependent g-factors in an InSb nanowire quantum dot allow for the occurrence of a variety of level crossings in the dot. While we observe the standard conductance enhancement in the Coulomb blockade region for aligned levels with different spins due to the Kondo effect, a vanishing of the conductance is found at the alignment of levels with equal spins. This conductance suppression appears as a canyon cutting through the web of direct tunneling lines and an enclosed Coulomb blockade region. In the center of the Coulomb blockade region, we observe the predicted correlation-induced resonance, which now turns out to be part of a larger scenario. Our findings are supported by numerical and analytical calculations.Comment: 5 pages, 4 figure

    Particle-scale structure in frozen colloidal suspensions from small angle X-ray scattering

    Get PDF
    During directional solidification of the solvent in a colloidal suspension, the colloidal particles segregate from the growing solid, forming high-particle-density regions with structure on a hierarchy of length scales ranging from that of the particle-scale packing to the large-scale spacing between these regions. Previous work has mostly concentrated on the medium- to large-length scale structure, as it is the most accessible and thought to be more technologically relevant. However, the packing of the colloids at the particle-scale is an important component not only in theoretical descriptions of the segregation process, but also to the utility of freeze-cast materials for new applications. Here we present the results of experiments in which we investigated this structure across a wide range of length scales using a combination of small angle X-ray scattering and direct optical imaging. As expected, during freezing the particles were concentrated into regions between ice dendrites forming a microscopic pattern of high- and low-particle-density regions. X-ray scattering indicates that the particles in the high density regions were so closely packed as to be touching. However, the arrangement of the particles does not conform to that predicted by any standard inter-particle pair potentials, suggesting that the particle packing induced by freezing differs from that formed during equilibrium or steady-state densification processes

    Phase transitions in two dimensions - the case of Sn adsorbed on Ge(111) surfaces

    Full text link
    Accurate atomic coordinates of the room-temperature (root3xroot3)R30degree and low-temperature (3x3) phases of 1/3 ML Sn on Ge(111) have been established by grazing-incidence x-ray diffraction with synchrotron radiation. The Sn atoms are located solely at T4-sites in the (root3xroot3)R30degree structure. In the low temperature phase one of the three Sn atoms per (3x3) unit cell is displaced outwards by 0.26 +/- 0.04 A relative to the other two. This displacement is accompanied by an increase in the first to second double-layer spacing in the Ge substrate.Comment: RevTeX, 5 pages including 2 figure

    Switching between dynamic states in intermediate-length Josephson junctions

    Get PDF
    The appearance of zero-field steps (ZFS’s) in the current-voltage characteristics of intermediate-length overlap-geometry Josephson tunnel junctions described by a perturbed sine-Gordon equation (PSGE) is associated with the growth of parametrically excited instabilities of the McCumber background curve (MCB). A linear stability analysis of a McCumber solution of the PSGE in the asymptotic linear region of the MCB and in the absence of magnetic field yields a Hill’s equation which predicts how the number, locations, and widths of the instability regions depend on the junction parameters. A numerical integration of the PSGE in terms of truncated series of time-dependent Fourier spatial modes verifies that the parametrically excited instabilities of the MCB evolve into the fluxon oscillations characteristic of the ZFS’s. An approximate analysis of the Fourier mode equations in the presence of a small magnetic field yields a field-dependent Hill’s equation which predicts that the major effect of such a field is to reduce the widths of the instability regions. Experimental measurements on Nb-NbxOy-Pb junctions of intermediate length, performed at different operating temperatures in order to vary the junction parameters and for various magnetic field values, verify the physical existence of switching from the MCB to the ZFS’s. Good qualitative, and in many cases quantitative, agreement between analytic, numerical, and experimental results is obtained

    C-reactive protein and albumin kinetics before community-acquired bloodstream infections- A Danish population-based cohort study

    Get PDF
    aEarly changes in biomarker levels probably occur before bloodstream infection (BSI) is diagnosed. However, this issue has not been fully addressed. We aimed at evaluating the kinetics of C-reactive protein (CRP) and plasma albumin (PA) in the 30 days before community-acquired (CA) BSI diagnosis. From a population-based BSI database we identified 658 patients with at least one measurement of CRP or PA from day-30 (D-30) through day-1 (D-1) before the day of CA-BSI (D0) and a measurement of the same biomarker at D0 or D1. Amongst these, 502 had both CRP and PA measurements which fitted these criteria. CRP and PA concentrations began to change inversely some days before CA-BSI diagnosis, CRP increasing by day-3.1 and PA decreasing by day-1.3. From D-30 to D-4, CRP kinetics (expressed as slopes-rate of concentration change per day) was-1.5 mg/l/day. From D-3 to D1, the CRP slope increased to 36.3 mg/l/day. For albumin, the slope between D-30 to D-2 was 0.1 g/l/day and changed to-1.8 g/l/day between D-1 and D1. We showed that biomarker levels begin to change some days before the CA-BSI diagnosis, CRP 3.1 days and PA 1.3 days before.publishersversionepub_ahead_of_prin

    Deformed Harmonic Oscillators for Metal Clusters: Analytic Properties and Supershells

    Full text link
    The analytic properties of Nilsson's Modified Oscillator (MO), which was first introduced in nuclear structure, and of the recently introduced, based on quantum algebraic techniques, 3-dimensional q-deformed harmonic oscillator (3-dim q-HO) with Uq(3) > SOq(3) symmetry, which is known to reproduce correctly in terms of only one parameter the magic numbers of alkali clusters up to 1500 (the expected limit of validity for theories based on the filling of electronic shells), are considered. Exact expressions for the total energy of closed shells are determined and compared among them. Furthermore, the systematics of the appearance of supershells in the spectra of the two oscillators is considered, showing that the 3-dim q-HO correctly predicts the first supershell closure in alkali clusters without use of any extra parameter.Comment: 25 pages LaTeX plus 21 postscript figure

    Supershells in Metal Clusters: Self-Consistent Calculations and their Semiclassical Interpretation

    Full text link
    To understand the electronic shell- and supershell-structure in large metal clusters we have performed self-consistent calculations in the homogeneous, spherical jellium model for a variety of different materials. A scaling analysis of the results reveals a surprisingly simple dependence of the supershells on the jellium density. It is shown how this can be understood in the framework of a periodic-orbit-expansion by analytically extending the well-known semiclassical treatment of a spherical cavity to more realistic potentials.Comment: 4 pages, revtex, 3 eps figures included, for additional information see http://radix2.mpi-stuttgart.mpg.de/koch/Diss
    corecore