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Summary 
Three  different  schemes  for  coupling  to  low 
impedance  Josephson  devices  have  been  investi- 
gated.  They  all  employ  superconducting  thin- 
film  microstrip  circuit  techniques.  The  sche- 
mes  are:  (i) a  quarterwave  stepped  impedance 
transformer,  (ii)  a  microstrip  resonator,  (iii) 
an  adjustable  impedance  transformer  in  inver- 
ted  microstrip.  Using  single  microbridges  to 
probe  the  performance we  found  that  the  most 
primising  scheme in  terms of coupling  effici- 
ency  and  useful  bandwidth was the  adjustable 
inverted  microstrip  transformer. 

Introduction 

The  succesful  application  of  Josephson  junc- 
tions  in  high  frequency  systems  depends  upon 
how  efficiently  the  devicesare  coupled to 
external  microwave  lines.  The  Josephson  ele- 
ments  are  often  very  low  impedance  devices, 
e.g., microbridges or high  current-density 
tunnel  junctions.  This  accentuates  the  demand 
for  coupling  schemes of low  characteristic 
impedance  at  high  frequencies. In applications 
such  as  the  fluxon  oscillator' a  single, long 
junction  must  be  matched.  Also  in  other  Jo- 
sephson  microwave  oscillators  with  single 
junctions2 or coherent  arrays3, it is  advan- 
tageous  to  operate at low  impedance  levels  as 
shown  by  the  following  estimate.  If a N-junc- 
tion  array  is  matched  to  an  external  load, 
RL = NRJ,  the  maximum  available  power  in  the 
high  frequency  limit (Vdc > >  R  I ) becomes 
PN = N(R I ) /8RJ.  Since  RJIc  is a  constant, 
the  available  power  increases  inversely  pro- 
portional  to RJ (and  proportional  to  N) . The 
junctions cannot  be infinitely  closely  packed 
due  to  mutual heating, and  hence  the  number 
of  junctions  which  can be accomodated  at  equi- 
valent  positions  is  limited,  and  the  resulting 
rf-impedance,  NRJ,  may  remain  low. 

Finally,  in  applications  such  as  the  parame- 
tric  reflection  amplifier'  optimum  performance 
is  achieved  if  the  signal  feed  line  has  cha- 
racteristic  impedance  less  than  the  normal 
state  resistance  of  the  parametric  device. 
M a consequence, it is natural  to look for  mi- 
crowave  circuits  of  low  impedance, i.e., at 
the 0.1R to 10 level. 

Here, we report on three  different  methods  to 
approach  the  problem.  They  all  use  supercon- 
ducting  thin-film  microwave  integrated circuit 
techniques because:  the  thin-fih  Circuits are pro- 
duced in the same processes which are  used  to  fabricate 
the junctions,  and  because  superconducting  thin-film 
circuits  have low loss, even  at  high  frequencies.  The 
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three  schemes  are:  (i)  a  quarterwave  high/low 
impedance  transformer,  (ii)  a  strip-resonator 
with  the  Josephson  device  mounted at the  end 
or in the center, (iii) a novel  approach  in- 
troducing  adjustable  impedance  in  microstrip 
design. The  scheme  employs  an  inverted  micro- 
strip  transformer  coupling. In all  three  cases 
single  thin-film  microbridges of normal  state 
resistances  in  the  range  0.02R  to  0.15R were 
used  to  probe  the  performance of the  circuits. 

I.  Quarterwave  high/low  transformer 
The thin-film  circuit  pattern  is  shown in Fig. 
1 (a). The  location of the  microbridge is indi- 
cated  by  the"x".  The  circuit was  made on a 
25.4~25.4~1 mm soda-glass  substrate. The impe- 
dance  transformer  consists  of  two  2-section 
X/4 transformers  separated  by a X/2 section. 
The  first  2-step  transformer  is  b'roadband  with 
moderate  impedance  ratio.  The 50R input  line 
is  transformed  into 19R. In order to  reach  the 
desired  low  output  impedance,  the  second 2- 
step  transformer  operates  with  a  very  large 
impedance  discontinuity  (122R)  such  that  the 
overall  impedance  ratio  becomes 60:l. The 
circuit  was  designed  to  have a  center  frequ- 
ency of 10 GHz.  The  performance of the  circuit 
is  illustrated in Fig.  2(a)  to  (e).  In  (a) 
the  measured  power  reflection vs.  frequency 
is  shown  without  microbridge. In (b)  a  simi- 
lar recording,  made  after  a 70 mil bridge was 
introduced in the  circuit,  is  shown. A compa- 
rison  shows  that  the cut and  the  bridge  match- 
es  the  transformer  structure  in  a '1.300 MHz 
bandwidth at 10.4 GHz.  Fig.  2(c)  shows  the 
measured  input  signal  necessary  to  maintain 
a  constant  suppression of the  supercurrent 
as  the  input  frequency  is  varied.  Maximum 
attenuation  means  maximum  power  transmitted 
to  the  bridge  detector. In Fig.  2  (d)  the 
bridge  is  biased  at a fixed  voltage  and  the 
receiver  frequency  is  varied.  Each  trace in 
the set of curves  in  (d)  shows  the  measured 
Josephson  radiation  vs.  frequency.  The  fre- 
quency  dependence of the  individual  traces 
is  a  convolution  of  the  Josephson  line-width 
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Fig. 1. Thin-film  circuit  patterns. 
(a)  4-section X/4 stepped  impedance  transfor- 
mer.  (b)  Strip  resonator  with  end  connected 
bias  leads  and  side  coupled  rf-input  line. 
The  junction  is  located at the X .  
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with  the  transformer  and the  receiver  response 
functions.  The  envelope  curve  reproduces  the 
transformer/receiver  pass-band. The peak  posi- 
tions  in  (c)  and  (d)  coincides. Finally, (e) 
shows  the  calculated  power  reflection  coeffi- 
cient  of  the  properly  terminated  transformer 
structure  assuming  that  all  sections  are A/4 
at 10 GHz.  The  calculated  and  the  measured 
widths of the  reflection  minimum  are  in  good 
agreement.  The  small  disagreement  between  the 
calculated  and  the  measured  center  frequencies 
are  not  significant  perse  since  the  microstrip 
design  formulae  are  accurate  only  to  within  a 
few pct. It is  not  obvious  why  the  70 mQ brid- 
ge behaves  as  a  matched  termination  when  the 
theoretical  matching  impedance  is 0.951, or why 
the  transmission-peak  falls  below  the  reflec- 
tion-dip. Tentatively,  we  may understand  these 
results  by  invoking  the  well-established  facts 
that  microbridges  are  accompanied  by  a  series 
inductance2  and  that  the  effective  lengths of 
sections  of  microstrip  are  influenced  by  step- 
in-width  discontinuities5. In a  model calcula- 
tion we  have  been  able  to  reproduce  the  rela- 
tive  frequency shift  between  reflection  and 
transmission  by  taking  these  stray  reactances 
into  account. 

The  maximum  integral  power  detected  from  a 
microbridge was 2.4 pW in  a 250 MHz linewidth 
(power  density 0.01 pW/MHz). 

11. Microstrip  resonator 
A  different  approach to, low-impedance 
coupling  is  to  employ a  resonator  as  impedance 
transformer. The  resonator  circuit  is .shown in 
Fig. l ( b ) .  The  high-impedance  lines  leading  to 
the  ends of the  resonator  section  are  filtered 
bias  leads.  An  rf-line  is  loosely  sidecoupled 
to the resonator.  The  microbridge was located 
either  in  the  center  (Fig.  lb)  or at the end 
of  the  resonator.  Both  conventional  and  inver- 
ted  microstrip  versions were studied.  The  re- 
sonator  length was X/2 at 10 GHz  in  conventio- 
nal  microstrip.  With  the  bridge at the  end,the 
measured  resonance  frequencies  were 9.5 GHz 
in conventional  and 12.5 GHz in  inverted 
microstrip  respectively.  With  the  bridge  in 
the  center,the  corresponding  resonance  frequ- 
encies  were 13 GHz  and 17 GHz. In all  cases 
the  quality  factor was Q = 200  as  inferred 
from  power  reflection  measurements. The dif- 
ference  in  resonance  frequencies  between 
conventional  and  inverted  microstrip  simply 
reflects  the  different  effective  dielectric 
constants. The  frequency  shift  caused by  the 
change  in  bridge  position  is  not  as  obvious. 
It may  be  understood  only  if  the  presence 
of the  bridge  (and  the 0.5 pm wide cut across 
the  resonator)  changes  the  effective  length 
of the  resonator.  This  is  consistent  with  the 
observation  already  made  that  the  microbridge 
is  accompanied  by  a  non-negligible  series  in- 
ductance. 

Fig. 3 illustrates  the  performance of the  con- 
ventional  microstrip  resonator  with  a  single 
center-located  microbridge.  The  current-volta- 
ge  curve  (IVC) of the  bridge  and  the  emitted 
Josephson  radiation  are  shown. A cavity  indu- 
ced  step  is  clearly  visible  in  the  IVC at 27 
pV corresponding  to  a  resonance  center  fre- 
quency of 13.1  GHz.  With  the  microwave  recei- 
ver  centered at resonance,  a  sharp  peak  in 
the  Josephson  radiation  is  measured  as  the 
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Fig. 2. Performance of multistep  transformer. 
(a)  Measured  power  reflection  vs.  frequemcy 
before scratching  bridge.  (b) Same as  (a)  with 
bridge  present. (c)  Measured  attennuator  set- 
ting in  input  line  to  maintain  constant  super- 
current  suppression.  (d)  Measured  power  output 
from  bridge.  Each  trace  corresponds  to a fixed 
dc-bias  voltage as indicated.  (e)  Calculated 
power  reflection  coefficient. 
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Fig .   3 ,   IV-curve   for   microbr idge   in   s t r ip   resonator   and   measured   spec t ra l   dens i ty   wi th  a 
f ixed   rece iver   f requency   ( reso lu t ion   bandwidth  5 MHz). The i n s e t  shows the   IF   v ideo   ou tpu t  
VS. LO-frequency. The two rece ive r   s idebands   a r e   r e so lved .  

b i a s   v o l t a g e  is swep t   pas t   t he   cav i ty   s t ep .  
The measured i n t e g r a l  power is 50 pW and t h e  
l inewidth  % 20  MHz a s   s e e n   i n   t h e   i n s e t ,  which 
shows a spectrum  analyzer   f requency  display  of  
the   de tec ted   Josephson  l ine   ( the   double   peak  
is an   a r t i f ac t   o f   t he   supe rhe te rodyne   de t ec -  
t ion  scheme).  The maximum i n t e g r a l  power mea- 
sured  was 80 pW ( 4  pW/MHz). The measured  peak 
i n   t h e  rf-power  vs.   voltage  curve i s  skewed 
due t o   p a r a m e t r i c   e x c i t a t i o n   o f   t h e   r e s o n a t o r  
a t   1 3 . 1  GHz a t   b i a s   v o l t a g e s  on t h e  low vol-  
t age   s ide   o f   t he   r e sona to r   s t ep .   Peaks   a r e  
a l s o   s e e n   a t   v o l t a g e s  where  higher  harmonics 
of   the  Josephson  f requency  coincide  with  the 
r e c e i v e r  and resonator   f requency.  A s i m i l a r  
"skewness"  of  these  harmonic  peaks is n o t  
observed. 

111. Adjus t ab le   i nve r t ed   mic ros t r ip  
t ransformer 

The t h i r d   a p p r o a c h   t o   t h e   d e s i g n   o f  low  impe- 
dance   coupl ing   c i rcu i t s   for   use   wi th   Joseph-  
son  junct ions  employs  inverted  microstr ip .  
The i n v e r t e d   m i c r o s t r i p   h a s   s w e r a l   a t t r a c t i v e  
f e a t u r e s ,  (i) t h e   c h a r a c t e r i s t i c  impedance is 
i n v e r s e l y   p r o p o r t i o n a l   t o   t h e   s t r i p - t o   g r o u n d -  
p lane   spac ing ,  (ii) t h e  dielectr ic  medium i s  
vacuum o r  helium which   imp l i e s   t ha t   t he   s t r i p -  
to   -groundplane   spac ing  , and  hence  the impe- 
dance , may be   var ied   and   tha t   the   d ie lec-  
tric l o s s e s   a r e   s m a l l ,  (iii) the   suppor t ing  
s u b s t r a t e   p l a y s   n o   e s s e n t i a l   r o l e   i n   t h e  
wave propagat ion   and   inexpens ive   subs t ra tes  
may be  used. W e  have  designed a m i c r o s t r i p  
holder   wi th   nominal   cen ter   f requency   a t  35 
GHz.  The b a s i c   i d e a  is i l l u s t r a t e d   i n   F i g .  4. 
The pro to type   uses  a s i n g l e  X/4 s e c t i o n  of 
i n v e r t e d   m i c r o s t r i p   w i t h  a subs t ra te - to-gro-  
undplane  spacing  which may be  varied  by  ben- 
d i n g   t h e   s u b s t r a t e  by  means of  a remotely 

c o n t r o l l e d   d i f f e r e n t i a l  screw and  eccent r ic  
l e v e r  mechanism.  With a s t r ip-width  of  2 mm 
and  an a i r  gap of 5 um t o  6 0  ym w e  achieve 
t ransformer  output   impedances  in   the  range 
0.1Q t o  5Q. The impedance  transformation i s  
r e a l i z e d   v i a  a 50 um s t e p   i n   t h e  ground- 
p l a n e   a t  a d i s t ance  X/4 from the  Josephson 
device.  The c i r c u i t   p a t t e r n  is shown i n   t h e  
upper   par t   o f   F ig .  4 .  The br idge  is loca ted  
a t   t h e  x and i s  followed by a sequence  of 
A/4 sections  which  transform  the  open  ended 
l i n e   t o  a low impedance  termination a t   t h e  
br idge .  The s i d e  arms a re   dc -b ia s   l eads  
and   t he   i npu t   l i ne  is dc-ground. The sub- 
s t r a t e  i s  an  inexpensive  microscope  cover- 
s l i d e   2 4 ~ 2 4 ~ 0 . 1 3  mm which i s  e a s i l y   b e n t .  
The performance may be  descr ibed  as   fol-  
lows.  With a 35 GHz s i g n a l   a p p l i e d   t o   t h e  
i n p u t ,   t h e  microwave power t r a n s m i t t e d   t o  
t he   b r idge  was measured  vs .   substrate- to-  
groundplane  spacing. The measured  f ract io-  
n a l  power t r a n s f e r  was found  proport ional  
t o   t h e   o u t p u t  impedance  of tHe t ransformer ,  
c a l c u l a t e d   a s  a func t ion   o f   subs t r a t e   pos i -  
t i o n  .6 

In   F ig .  5 w e  show the   measured   inc ident  power 
(closed  symbols)   necessary  to   induce a 1 0 %  
suppress ion   of   the   supercur ren t   as   the  fre- 
quency i s  va r i ed   w i th   f i xed   subs t r a t e .  Also 
shown i s  t h e   i n p u t  power c o r r e c t e d   f o r   t h e  
measured   re f lec ted  power (open  symbols). 
A broadband  coupling  has  been  achieved  except 
f o r  a s t rong   resonant   absorp t ion   peak   a t  33.5 
GHz. 

Also t h e  microwave  generation by the  ac-Joseph- 
s o n   e f f e c t  was measured VS. s u b s t r a t e   p o s i t i o n  
and  frequency.  These  measurements were i n   p e r -  
f e c t  agreement   with  the  resul ts   descr ibed  abo-  
ve.  A t  optimum a s  much a s  1 2 0  pW was e x t r a c t e d  
from a 40  rnQ b r idge  and abou t   ha l f   o f   t ha t  
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tinuities  in  stripline  width.  Such  large  jumps 
in  width  require  that  corrections  are  made  for 
fringing  fields at the edges.(Design  equations 
for  microstrip  which  include  these  corrections 
do not  apply t;o the  present  extreme case.) 

The  resonator  coupling  works  well  in  a  narrow 
bandwidth  and  may  be  useful  in  fixed  frequency 
applications.  Considerable  power was  extracted 
from  a  single  microbridge.  Compared  to  the 
transformer-coupled  case,the  emitted  linewidth 
was  narrowed  by  the  regenerative  interaction 
between  bridge  and  resonator. 

The  best  performance so far was achieved  with 
the  adjustable  inverted  microstrip  transformer 
coupling. The  narrow  Josephson  line  was  tunab- 
le  over  a 10% bandwidth  without  significant 
change  in  output power. The  measured  power 
output  from  a  single  microbridge  was  the  lar- 
gest  ever  reported. 
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