172 research outputs found

    Ultrastructural examination of spermiogenesis and spermatozoon ultrastructure in Congo tetr Phenacogrammus interruptus Boulenger, 1899 (Ostariophysi: Characiformes: Alestidae)

    Get PDF
    Ultrastructural studies of spermiogenesis in Phenacogrammus interruptus using transmission electron microscopy revealed that the process is characterized by flagellum development, formation of a cytoplasmic canal, nuclear rotation, and nuclear fossa formation. Chromatin compaction proceeds during spermatid transformation within the spermatocysts as well as after spermiation within the lumen of the efferent ducts. The spermatozoon is of primitive type and exhibits characters typical for Type I aquasperm. The head consists of a spherical nucleus with highly condensed chromatin and a centrally located electron lucent area connected to a moderate-sized nuclear fossa. The nuclear fossa contain centrioles in perpendicular arrangement, surrounded by osmiophilic fibrous material. In the short midpiece, several mitochondria and vesicles are unevenly distributed in the cytoplasm forming the cytoplasmic collar at the base of the nucleus. The cytoplasmic collar surrounds the initial part of the flagellum, running in the cytoplasmic canal. The flagellar axoneme has a typical pattern (9x2+2) and the flagellum contains membranous compartments in the portion immediately posterior to the termination of the cytoplasmic canal

    Genetic analysis of photosynthesis-related traits in faba bean (Vicia faba) for crop improvement

    Get PDF
    Increasing productivity through improvement of photosynthesis in faba bean breeding programmes requires understanding of the genetic control of photosynthesis-related traits. Hence, we investigated the gene action of leaf area, gas exchange traits, canopy temperature, chlorophyll content, chlorophyll fluorescence parameters and biomass. We chose inbred lines derived from cultivars 'Aurora' (Sweden) and 'Melodie' (France) along with an Andean accession, ILB 938, crossed them (Aurora/2 x Melodie/2, ILB 938/2 x Aurora/2 and Melodie/2 x ILB 938/2), and prepared the six standard generations for quantitative analysis (P-1, P-2, F-1, F-2, B-1, and B-2). Gene action was complex for each trait, involving additive and dominance gene actions and interactions. Additive gene action was important for SPAD, photosynthetic rate, stomatal conductance and F-v/F-m. Dominance effect was important for biomass production. It is suggested that breeders selecting for productivity can maximize genetic gain by selecting early generations for canopy temperature, SPAD and F-v/F-m, then later generations for biomass. The information on genetics of various contributing traits of photosynthesis will assist plant breeders in choosing an appropriate breeding strategy for enhancing productivity in faba bean.Peer reviewe

    UPLC-MS/MS Profile of Alkaloids with Cytotoxic Properties of Selected Medicinal Plants of the Berberidaceae

    Get PDF
    Cancer is one of the most occurring diseases in developed and developing countries. Plant-based compounds are still researched for their anticancer activity and for their quantity in plants. Therefore, the modern chromatographic methods are applied to quantify them in plants, for example, UPLC-MS/MS (ultraperformance liquid chromatography tandem mass spectrometry). Therefore, the aim of the present study was to evaluate the content of sanguinarine, berberine, protopine, and chelidonine in Dicentra spectabilis (L.) Lem., Fumaria officinalis L., Glaucium flavum Crantz, Corydalis cava L., Berberis thunbergii DC., Meconopsis cambrica (L.) Vig., Mahonia aquifolium (Pursh) Nutt., Macleaya cordata Willd., and Chelidonium majus L. For the first time, N,N-dimethyl-hernovine was identified in M. cambrica, B. thunbergii, M. aquifolium, C. cava, G. flavum, and C. majus; methyl-hernovine was identified in G. flavum; columbamine was identified in B. thunbergii; and methyl-corypalmine, chelidonine, and sanguinarine were identified in F. officinalis L. The richest source of protopine among all the examined species was M. cordata (5463.64 ± 26.3 μg/g). The highest amounts of chelidonine and sanguinarine were found in C. majus (51,040.0 ± 1.8 μg/g and 7925.8 ± 3.3 μg/g, resp.), while B. thunbergi contained the highest amount of berberine (6358.4 ± 4.2 μg/g)

    Thermal and oxygen conditions during development cause common rough woodlice ("Porcellio scaber") to alter the size of their gas-exchange organs

    Get PDF
    Terrestrial isopods have evolved pleopodal lungs that provide access to the rich aerial supply of oxygen. However, isopods occupy conditions with wide and unpredictable thermal and oxygen gradients, suggesting that they might have evolved adaptive developmental plasticity in their respiratory organs to help meet metabolic demand over a wide range of oxygen conditions. To explore this plasticity, we conducted an experiment in which we reared common rough woodlice (Porcellio scaber) from eggs to maturation at different temperatures (15 and 22 °C) combined with different oxygen levels (10% and 22% O2). We sampled animals during development (only females) and then examined mature adults (both sexes). We compared woodlice between treatments with respect to the area of their pleopod exopodites (our proxy of lung size) and the shape of Bertalanffy’s equations (our proxy of individual growth curves). Generally, males exhibited larger lungs than females relative to body size. Woodlice also grew relatively fast but achieved a decreased asymptotic body mass in response to warm conditions; the oxygen did not affect growth. Under hypoxia, growing females developed larger lungs compared to under normoxia, but only in the late stage of development. Among mature animals, this effect was present only in males. Woodlice reared under warm conditions had relatively small lungs, in both developing females (the effect was increased in relatively large females) and among mature males and females. Our results demonstrated that woodlice exhibit phenotypic plasticity in their lung size. We suggest that this plasticity helps woodlice equilibrate their gas exchange capacity to differences in the oxygen supply and metabolic demand along environmental temperature and oxygen gradients. The complex pattern of plasticity might indicate the effects of a balance between water conservation and oxygen uptake, which would be especially pronounced in mature females that need to generate an aqueous environment inside their brood pouch

    Phytotoxic steroidal saponins from Agave offoyana leaves

    Get PDF
    A bioassay-guided fractionation of Agave offoyana leaves led to the isolation of five steroidal saponins (1–5) along with six known saponins (6–11). The compounds were identified as (25R)-spirost-5-en-2α,3β-diol-12-one 3-O-{α-L-rhamnopyranosyl-(1→3)-O-β-D-glucopyranosyl-(1→2)-O-[β-D-xylopyranosyl-(1→3)]-O-β-D-glucopyranosyl-(1→4)-O-β-D-galactopyranoside} (1), (25R)-spirost-5-en-3β-ol-12-one 3-O-{α-L-rhamnopyranosyl-(1→3)-O-β-D-glucopyranosyl-(1→2)-O-[β-D-xylopyranosyl-(1→3)]-O-β-D-glu copyranosyl-(1→4)-O-β-D-galactopyranoside} (2), (25R)-spirost-5-en-3β-ol-12-one 3-O-{β-D-xylopyrano syl-(1→3)-O-β-D-glucopyranosyl-(1→2)-O-[β-D-xylopyranosyl-(1→3)]-O-β-D-glucopyranosyl-(1→4)-O-β -D-galactopyranoside} (3), (25R)-26-O-β-D-glucopyranosylfurost-5-en-3β,22α,26-triol-12-one 3-O- {α-L-rhamnopyranosyl-(1→3)-O-β-D-glucopyranosyl-(1→2)-O-[β-D-xylopyranosyl-(1→3)]-O-β-D-glucopyrano syl-(1→4)-O-β-D-galactopyranoside} (4) and (25R)-26-O-β-D-glucopyranosylfurost-5-en-3β,22α,26-triol- 12-one 3-O-{β-D-xylopyranosyl-(1→3)-O-β-D-glucopyranosyl-(1→2)-O-[β-D-xylopyranosyl-(1→3)]-O-β- D-glucopyranosyl-(1→4)-O-β-D-galactopyranoside} (5) by comprehensive spectroscopic analysis, including one- and two-dimensional NMR techniques, mass spectrometry and chemical methods. The phytotoxicity of the isolated compounds on the standard target species Lactuca sativa was evaluated

    Triterpenoid saponins from the aerial parts of Trifolium argutum Sol. and their phytotoxic evaluation

    Get PDF
    Four triterpenoid saponins (1–4) were isolated from the aerial parts of Trifolium argutum Sol. (sharptooth clover) and their structures were elucidated by comprehensive spectroscopic analysis, including 1D and 2D NMR techniques, mass spectrometry and chemical methods. Two of them are new compounds, characterized as 3-O-[α-L-rhamnopyranosyl-(1→2)-β-D-galactopyranosyl-(1→2)-β-D-glucuronopyra- nosyl]-3β,24-dihydroxyolean-12-ene-22-oxo-29-oic acid (1) and 3-O-[β-D-galactopyranosyl-(1→2)- β-D-glucuronopyranosyl]-3β,24-dihydroxyolean-12-ene-22-oxo-29-oic acid (2). The occurrence of 3β,24-dihydroxyolean-12-ene-22-oxo-29-oic acid (melilotigenin) in its natural form is reported for the first time as a triterpenoid aglycone within Trifolium species. The phytotoxicity of compounds was evaluated on four STS at concentration 1 μM to 333 mM. Compound 1 was the most active, showing more than 60% inhibition on the root growth of L. sativa at the higher dose, with IC50 (254.1 μM) lower than that of Logran1 (492.6 μM), a commercial herbicide used as positive control. The structure–activity relationships indicated that both aglycones and glycosidic parts may influence the phytotoxicity of saponins

    Norditerpenoids with selective anti-cholinesterase activity from the roots of Perovskia atriplicifolia Benth

    Get PDF
    Inhibition of cholinesterases remains one of a few available treatment strategies for neurodegenerative dementias such as Alzheimer's disease and related conditions. The current study was inspired by previous data on anticholinesterase properties of diterpenoids from Perovskia atriplicifolia and other Lamiaceae species. The acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition by the three new natural compounds-(1R,15R)-1-acetoxycryptotanshinone (1), (1R)-1-acetoxytanshinone IIA (2), and (15R)-1-oxoaegyptinone A (3)-as well as, new for this genus, isograndifoliol (4) were assessed. Three of these compounds exhibited profound inhibition of butyrylcholinesterase (BChE) and much weaker inhibition of acetylcholinesterase (AChE). All compounds (1-4) selectively inhibited BChE (IC(50) = 2.4, 7.9, 50.8, and 0.9 µM, respectively), whereas only compounds 3 and 4 moderately inhibited AChE (IC(50) 329.8 µM and 342.9 µM). Molecular docking and in silico toxicology prediction studies were also performed on the active compounds. Natural oxygenated norditerpenoids from the traditional Central Asian medicinal plant P. atriplicifolia are selective BChE inhibitors. Their high potential makes them useful candidate molecules for further investigation as lead compounds in the development of a natural drug against dementia caused by neurodegenerative diseases

    Sexual dimorphism of AMH, DMRT1 and RSPO1 localization in the developing gonads of six anuran species.

    No full text
    Supplementary Material (tables and figures) for this paper is available at: http://dx.doi.org/10.1387/ijdb.130192rpInternational audienceIn vertebrates, several genes which are differentially expressed in various species, have been implicated in sex determination and gonadal differentiation. We used immunolocalization to study the expression pattern of three proteins AMH, DMRT1, RSPO1 involved in the sexual differentiation of gonads. The pattern of AMH, DMRT1 and RSPO1 expression was analyzed in X. laevis and in five other divergent anuran species: Bombina bombina, Bufo viridis, Hyla arborea, Rana arvalis and Rana temporaria during gonadal development. The pattern of expression of AMH in the developing testes of six studied anuran species was similar to that described for other vertebrates. AMH was strongly expressed in differentiating Sertoli cells. Interestingly, in B. viridis, R. arvalis and R. temporaria, AMH was also expressed in ovaries. In all studied species, DMRT1 was highly expressed in the developing testes, in both the somatic and germ cells. It was also expressed at low level in ovaries in all studied species, with the exception of H. arborea. RSPO1 was expressed in the developing ovaries, especially in the somatic cells, and was almost undetectable in developing testes in all examined anurans. These developmental expression patterns strongly suggest an involvement of AMH and DMRT1 in the development of male gonads and of RSPO1 in the female gonads. The differences in the expression patterns of these proteins in the gonads of different species might reflect the diversity of gonadal development patterns in anurans resulting from long lasting and diverged paths of their evolution
    corecore