17,941 research outputs found

    A method for determining the dosage-mortality curve of malathion against the pea aphid, Acyrlthosiphom pisum (Harris) (Homoptera: Aphididae)

    Get PDF
    The procedures of a reliable method for establishing the dosage-mortality curve for malathion and the pea aphid, <i>Acyrthosiphon pisum</i> (Harris), are described and evaluated. They include the choice of insecticide formulation, the conditions for rearing and collecting, the holding of treated aphids, and the analysis of mortality data. The LD50 of actual malathion in acetone solution to the pea aphid is 23.5 nanograms per aphid. The 95% fiducial limits about this estimate are 22.9 and 24.1 nanograms per aphid. The slope, ± S.E. (n=7) of the log-dosage:probit-mortality line is 5.5 ± 0.4

    Effects of noise upon human information processing

    Get PDF
    Studies of noise effects upon human information processing are described which investigated whether or not effects of noise upon performance are dependent upon specific characteristics of noise stimulation and their interaction with task conditions. The difficulty of predicting noise effects was emphasized. Arousal theory was considered to have explanatory value in interpreting the findings of all the studies. Performance under noise was found to involve a psychophysiological cost, measured by vasoconstriction response, with the degree of response cost being related to scores on a noise annoyance sensitivity scale. Noise sensitive subjects showed a greater autonomic response under noise stimulation

    An Empirically Based Calculation of the Extragalactic Infrared Background

    Get PDF
    Using the excellent observed correlations among various infrared wavebands with 12 and 60 micron luminosities, we calculate the 2-300 micron spectra of galaxies as a function of luminosity. We then use 12 micron and 60 micron galaxy luminosity functions derived from IRAS data, together with recent data on the redshift evolution of galaxy emissivity, to derive a new, empirically based IR background spectrum from stellar and dust emission in galaxies. Our best estimate for the IR background is of order 2-3 nW/m^2/sr with a peak around 200 microns reaching 6-8 nW/m^2/sr. Our empirically derived background spectrum is fairly flat in the mid-IR, as opposed to spectra based on modeling with discrete temperatures which exhibit a "valley" in the mid-IR. We also derive a conservative lower limit to the IR background which is more than a factor of 2 lower than our derived flux.Comment: 14 pages AASTeX, 2 .ps figures, the Astrophysical Journal, in pres

    De-blending Deep Herschel Surveys: A Multi-wavelength Approach

    Get PDF
    Cosmological surveys in the far infrared are known to suffer from confusion. The Bayesian de-blending tool, XID+, currently provides one of the best ways to de-confuse deep Herschel SPIRE images, using a flat flux density prior. This work is to demonstrate that existing multi-wavelength data sets can be exploited to improve XID+ by providing an informed prior, resulting in more accurate and precise extracted flux densities. Photometric data for galaxies in the COSMOS field were used to constrain spectral energy distributions (SEDs) using the fitting tool CIGALE. These SEDs were used to create Gaussian prior estimates in the SPIRE bands for XID+. The multi-wavelength photometry and the extracted SPIRE flux densities were run through CIGALE again to allow us to compare the performance of the two priors. Inferred ALMA flux densities (Fi^i), at 870μ\mum and 1250μ\mum, from the best fitting SEDs from the second CIGALE run were compared with measured ALMA flux densities (Fm^m) as an independent performance validation. Similar validations were conducted with the SED modelling and fitting tool MAGPHYS and modified black body functions to test for model dependency. We demonstrate a clear improvement in agreement between the flux densities extracted with XID+ and existing data at other wavelengths when using the new informed Gaussian prior over the original uninformed prior. The residuals between Fm^m and Fi^i were calculated. For the Gaussian prior, these residuals, expressed as a multiple of the ALMA error (σ\sigma), have a smaller standard deviation, 7.95σ\sigma for the Gaussian prior compared to 12.21σ\sigma for the flat prior, reduced mean, 1.83σ\sigma compared to 3.44σ\sigma, and have reduced skew to positive values, 7.97 compared to 11.50. These results were determined to not be significantly model dependent. This results in statistically more reliable SPIRE flux densities.Comment: 8 pages, 7 figures, 3 tables. Accepted for publication in A&

    Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. III: Role of particle-number projection

    Full text link
    Starting from HFB-6, we have constructed a new mass table, referred to as HFB-8, including all the 9200 nuclei lying between the two drip lines over the range of Z and N > 6 and Z < 122. It differs from HFB-6 in that the wave function is projected on the exact particle number. Like HFB-6, the isoscalar effective mass is constrained to the value 0.80 M and the pairing is density independent. The rms errors of the mass-data fit is 0.635 MeV, i.e. better than almost all our previous HFB mass formulas. The extrapolations of this new mass formula out to the drip lines do not differ significantly from the previous HFB-6 mass formula.Comment: 9 pages, 7 figures, accepted for publication in Phys. Rev.

    Detection and quantification of inverse spin Hall effect from spin pumping in permalloy/normal metal bilayers

    Full text link
    Spin pumping is a mechanism that generates spin currents from ferromagnetic resonance (FMR) over macroscopic interfacial areas, thereby enabling sensitive detection of the inverse spin Hall effect that transforms spin into charge currents in non-magnetic conductors. Here we study the spin-pumping-induced voltages due to the inverse spin Hall effect in permalloy/normal metal bilayers integrated into coplanar waveguides for different normal metals and as a function of angle of the applied magnetic field direction, as well as microwave frequency and power. We find good agreement between experimental data and a theoretical model that includes contributions from anisotropic magnetoresistance (AMR) and inverse spin Hall effect (ISHE). The analysis provides consistent results over a wide range of experimental conditions as long as the precise magnetization trajectory is taken into account. The spin Hall angles for Pt, Pd, Au and Mo were determined with high precision to be 0.013±0.0020.013\pm0.002, 0.0064±0.0010.0064\pm0.001, 0.0035±0.00030.0035\pm0.0003 and −0.0005±0.0001-0.0005\pm0.0001, respectively.Comment: 11 page
    • …
    corecore