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Modelling of many real-world processes, such as drug delivery, wastewater treatment, and pharmaceutical production,
requires accurate descriptions of the dynamics of hard particles confined in complicated domains. In particular, when
modelling sedimentation processes or systems with driven flows, it is important to accurately capture volume exclusion
effects. This work applies Dynamic Density Functional Theory to the evolution of a particle density under diffusion,
external forces, particle–particle interaction, and volume exclusion. Using a spectral element framework, for the first
time it is possible to include all of these effects in dynamic simulations on complex domains. Moreover, this allows one
to apply complicated no-flux, and other non-local, non-linear, boundary conditions. The methodology is also extended
to control problems, addressing questions of how to enhance production set-up in industrially-motivated processes.
In this work the relevant models are introduced, numerical methods are discussed, and several example problems are
solved to demonstrate the methods’ versatility. It is shown that incorporating volume exclusion is crucial for simulation
accuracy and we illustrate that the choice of boundary conditions significantly impacts the dynamics.

I. INTRODUCTION

Many physical processes can be modelled by systems of
interacting particles, both in equilibrium and in motion. The
particles in such systems can be soft, i.e., they are able to over-
lap and deform, or hard, in which case they exclude volume.
Granular media, colloidal fluids, and liquid crystals can be
described by particle system models33, and even pedestrians,
cars, and animals can be modelled as interacting particles27,
for which volume exclusion is a crucial aspect of their dynam-
ics. A common approach is to model volume-excluding parti-
cles as approximately spherical with a hard core33. Extensions
to systems of non-spherical or orientable particles exist, with
applications for self-propelled or magnetic particles56.

The fact that such particles can only occupy a given vol-
ume directly impacts on many real-world dynamical situa-
tions, such as sedimentation, jamming in flows through con-
strictions, and the formation of particle clusters. For example,
when modelling sedimentation processes without volume ex-
clusion, i.e., as soft particle dynamics, one would find that a
very thin layer of overlapping particles is formed at the bottom
of the domain. This is not physically accurate for hard particle
fluids and describing such processes with a soft particle model
would overestimate the density in this region; accurate mod-
els of volume exclusion are required in this, and many other,
applications.

There are a multitude of different ways of modelling parti-
cle dynamics. If one were interested in the dynamics of each
individual particle, the size of the system would be limited by
computational capacity to systems of around 103–106 parti-
cles. Typical molecular systems, such as water, contain 1025

particles per cubic litre. This prohibits the computation of
the dynamics of each individual particle, so other approaches
have to be employed. For systems in equilibrium, statisti-
cal mechanics34,51 provides a valuable alternative by consid-
ering the particle ensemble, and therefore a particle density.

From this formulation (equilibrium) Density Functional The-
ory (DFT) arose18,26. In this theory, the Helmholz free energy,
denoted by F , of a system in equilibrium can be expressed as
a functional of the one-body particle density, which depends
on the three spatial dimensions only and, crucially, not on the
number of particles. Following this, the dynamics of such par-
ticle systems can be modelled using Dynamic Density Func-
tional Theory (DDFT)56, which is the dynamic extension of
DFT. The key idea in DDFT is that a one-body particle den-
sity, denoted by ρ , evolves in space and time according to the
Helmholtz free energy of the system. In particular, for non-
driven systems (where there is no advective flow and all po-
tentials are time-independent), ρ will evolve towards the equi-
librium density ρ∞, for which F is minimized. Such DDFT
models are complicated integro-partial differential equations
(integro-PDEs) that have to be solved numerically, and differ-
ent numerical methods are available to do so on simple one-,
two-, and three-dimensional domains12,16,21,49. As above, a
key advantage of DFT and DDFT models is that they are in-
dependent of the number of particles, and their computation
cost (formally) only depends on the dimensions of the spa-
tial domain, while retaining information on the particle scale
through the microscopic nature of the free energy (which can
capture effects, such as layering of hard spheres, on the scale
of the particles themselves).

DDFT is typically applied on simple, e.g., rectangular pe-
riodic, domains. However, many real-world dynamics, such
as drug delivery38, sedimentation in industrial processes23,62,
or even crowd dynamics28, take place on much more compli-
cated domains. It is therefore important to understand how
to solve models that include volume exclusion effects on do-
mains that are relevant in real-world applications. Moreover,
in applications such as drug delivery or industrial manufactur-
ing processes, it is often crucial to optimize a given process
for a desired outcome. For example, one may want to answer
the question of how the sedimentation process in an indus-
trial context, such as in brewing62, wastewater treatment23, or
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centrifugation in the pharmaceutical industry30, can be opti-
mized by varying given parameters in an experimental set up.
Such questions can be answered using techniques from opti-
mal control theory. It is clear that if one would like to optimize
a process involving hard particles, it is important to incorpo-
rate volume exclusion effects into the set-up.

Recently, advances have been made in solving DDFT mod-
els for soft particles on complicated domains41, as well as
in solving associated control problems2,41. However, until
now, these methods had not been applied to more complicated
DDFTs, such as those that model volume exclusion. This
paper demonstrates how the framework developed in [2] and
[41] can be extended to these more complicated DDFT mod-
els, which lays a crucial foundation for computing even more
sophisticated DDFTs on complex domains, as well as solving
control problems involving such models.

The paper is structured as follows: In Section II the equilib-
rium and dynamic DFT models are introduced, as well as an
associated optimal control problem. In Section III the neces-
sary numerical methods are introduced, before some example
problems are solved in Section IV. Section V provides some
concluding remarks.

II. MODEL EQUATIONS

In this section the relevant models are introduced. First, the
equilibrium DFT is discussed to provide the necessary context
on modelling volume exclusion. Then the DDFT model that
is solved in the present work is introduced. Finally, we dis-
cuss an optimal control problem that involves the considered
DDFT model, and present (first-order) optimality conditions
for solving such a problem.

A. The DFT Model

Equilibrium Density Functional Theory dictates that the
Helmholtz free energy, denoted by F , of an open thermo-
dynamic system in equilibrium can be fully determined by a
single variable: the one-body particle density ρ . This equil-
librium density is found by minimizing F . Foundational ref-
erences for this theory are [18] and [26]. The general form of
F is given by

F [ρ] = Fid[ρ]+Fext[ρ]+Fexc[ρ], (1)

where the ideal gas and external contributions are known to
be

Fid[ρ] =
∫

Ω

ρ (lnρ −1)d~x, Fext[ρ] =
∫

Ω

ρVextd~x,

respectively, with Vext a given external potential and Ω a given
spatial domain. Here, and in the following, we have (without
loss of generality) set the de Broglie wavelength and temper-
ature to be equal to one (see, e.g., [56, Eq. (11)] for a version
including these parameters). The excess free energy Fexc is
generally not known and subject to approximation, apart from
the case of hard rods in one dimension35.

One widely used and straightforward approximation to the
excess free energy is the mean-field approximation, which is
given by

FMF[ρ] =
1
2

∫

Ω

∫

Ω

ρ(~x)ρ(~x′)V2(|~x−~x′|)d~x′d~x, (2)

where V2 is a given two-body interaction potential37. This
version of Fexc models soft particles and cannot capture vol-
ume exclusion effects, i.e., non-overlapping particles. Such
a model can be accurate in low density regimes, but fails to
correctly reproduce the dynamics for denser systems.

A successful approach for modelling the excess free en-
ergy of hard particle systems is called Fundamental Measure
Theory (FMT)44. However, this is computationally expensive,
since multiple convolution integrals have to be computed over
regions determined by the surface and volumes of the parti-
cles. The derivation of optimal control problems involving
such models and their solution on complicated domains is
also highly non-trivial. Instead, in the present work, follow-
ing [5], we consider a simplification of the FMT approach to
model these volume exclusion effects, and leave more com-
plicated models for future work. Following the formulation
by Rosenfeld44, a general excess free energy of a system can
be approximated by

Fexc[ρ] =
∫

Ω

Φ[ρ]d~x, (3)

where Φ is the reduced free energy density. For more detail
on this, and FMT in general, we refer the reader to the re-
view [46]. Based on the FMT theory for three-dimensional
spheres, in which Φ is a complicated expression based on the
fundamental measures of a sphere, and on the known exact so-
lution for hard rods in one dimension35, Rosenfeld derived a
version of the FMT theory for two-dimensional hard disks45.
However, some additional approximations have to be made
when choosing the weighted densities (typically convolutions
of the density, ρ , with ‘fundamental measures’ of a sphere,
such as its volume or surface area), which is not necessary
in one and three dimensions, and there exist alternative for-
mulations48. In the uniform limit, for one particle species,
the free energy for the bulk fluid is the same as derived by
scaled particle theory (SPT)29,39,40, which also coincides with
the Percus–Yevick compressibility equation36, as detailed in
[43]. The result is that

Φ[ρ] =−ρ ln(1−aρ)+
aρ2

1−aρ
. (4)

Here η := aρ , with a = πσ2/4, is the local packing fraction,
depending on the particle diameter σ and the density ρ . While
the SPT approximation (4) and its three-dimensional equiva-
lent are used in classical DFT22,32,47,50,57,63, and other statis-
tical mechanics approaches13,14,17,24, in DDFT it is not com-
monly applied and only the work of Archer et al.4,5,31,64 is
known to us in this context.

Combining (3) and (4), the approximation to Fexc of inter-
est is

FVE[ρ] =
∫

Ω

(
−ρ ln(1−aρ)+

aρ2

1−aρ

)
d~x. (5)
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Note that we require ρ < 1/a, since the local packing fraction
η < 1 everywhere in the domain by definition of the model.
The approximations FMF and FVE for the free energy can be
combined to model both volume exclusion and attractive or
repulsive soft interactions, which has been done in [5]. Then
the Helmholtz free energy functional becomes

F [ρ] = Fid[ρ]+Fext[ρ]+F MF[ρ]+FVE[ρ]. (6)

B. The DDFT Model

Dynamic Density Functional Theory is based on the DFT
description of the free energy in terms of the one-body density
ρ . DDFT describes the evolution of ρ towards equilibrium,
given the free energy F defined in (1). A comprehensive re-
view of DDFT can be found in [56]. The general form of the
model is given by

∂ρ

∂ t
= ∇ ·

(
ρ∇

δF [ρ]

δρ

)
in (0,T )×Ω,

0 = ρ∇
δF [ρ]

δρ
·~n on (0,T )×∂Ω,

ρ(0,~x) = ρ0(~x) on {t = 0}×Ω,

where Ω is the considered domain with boundary ∂Ω,~n is the
outward unit normal, and the time is defined up to some given
time horizon T . Note that the boundary conditions chosen
here are no-flux conditions and, in particular, are non-local
due to the form of FMF in (2); its functional derivative corre-
sponds to a convolution between V2 and ρ . In the present work
we almost exclusively consider no-flux boundary conditions,
since these are most realistic in many real-world applications,
and one of the most complicated cases to treat. One can swap
these for Dirichlet, Robin, or periodic conditions straightfor-
wardly in the discussed numerical framework. In one numer-
ical example in Section IV we will compare the results of a
model with no-flux boundary conditions against one with pe-
riodic boundary conditions.

In order to derive the dynamic model explicitly in terms of
the free energy given in (6), we need to take the appropriate
derivatives of the term that captures volume exclusion, given
by (5). We obtain

jVE(ρ) :=−ρ∇
δFVE[ρ]

δρ
=−

aρ∇ρ

1−aρ
+ρ∇

aρ −2
(aρ −1)2 . (7)

Equivalent standard calculations for the other terms in (6) re-
sult in an extended mean-field DDFT model, see e.g., [56], for
the mean-field model without the additional term. This results

in

∂ρ

∂ t
= ∇

2ρ −∇ · jVE(ρ)+∇ · (ρ∇Vext) (8)

+∇ ·
∫

Ω

ρ(t,~x)ρ(t,~x′)∇V2(|~x−~x′|)d~x′ in (0,T )×Ω,

0 =
∂ρ

∂n
− jVE(ρ) ·~n+ρ

∂Vext

∂n

+
∫

Ω

ρ(t,~x)ρ(t,~x′)
∂V2(|~x−~x′|)

∂n
d~x′ on (0,T )×∂Ω,

ρ(0,~x) = ρ0(~x) on {t = 0}×Ω.

This DDFT model captures approximate volume exclusion ef-
fects in the particle dynamics. Removing the term jVE recov-
ers the mean-field DDFT model. It can be solved on compli-
cated domains using the MultiShape package, as described in
[41]. The numerical methods used to solve (8) are briefly dis-
cussed in Section III and numerical examples are presented in
Section IV.

C. The Control Problem

In addition to solving the forward DDFT model, a problem
of considerable interest is that of optimizing particle distribu-
tions arising from such processes. Therefore, we now con-
sider applying the DDFT model as a PDE constraint within
a control problem. We refer to [61] for a general discussion
of optimal control problems with PDE constraints, and to [2,
3, 41] for optimal control with mean-field DDFT models as
constraints. We note that the mathematical analysis of such
non-linear problems is highly challenging; see, e.g., [11]. In
this section, we will outline the necessary aspects of the opti-
mal control framework for the DDFT model (8).

The control problem of interest is

min
ρ,~w

[
J (ρ,~w) :=

1
2
‖ρ − ρ̂‖2

L2((0,T )×Ω)+
γ

2
‖~w‖2

L2((0,T )×Ω)

]

(9)

subject to

∂ρ

∂ t
=−∇ · (D(ρ)+ jVE(ρ)+I (ρ)+ρ~w) in (0,T )×Ω,

0 = (D(ρ)+ jVE(ρ)+I (ρ)+ρ~w) ·~n on (0,T )×∂Ω,

ρ(0,~x) = ρ0(~x) on {t = 0}×Ω,

with jVE given by (7),

D(ρ) =−∇ρ −ρ∇Vext,

I (ρ) =−
∫

Ω

ρ(t,~x)ρ(t,~x′)∇V2(|~x−~x′|)d~x′,

γ a given regularization parameter, and ρ̂ a given desired den-

sity that may depend on both time and space. Note that in
comparison to DDFT model (8), the PDE constraint in (9)
contains the additional term involving ~w, which is an advec-
tive field. It can be viewed as a generalization of the conser-
vative external force contribution ∇Vext.
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The aim of solving this problem is to minimize the cost
functional J , which is achieved by driving the particle den-
sity ρ towards the desired density ρ̂ , as measured in the given
norm. This is the role of the control variable, denoted by ~w,
which in this problem is the advective field, and drives the
DDFT model towards the desired state. The use of control is
penalized in the second term in the cost functional J . How
much control is permitted to be invested is dependent on the
regularization parameter γ . If γ is small, the control is per-
mitted to be large, and ρ is more likely to be close to ρ̂ . If
γ is large, less control may be applied to the system and one
may not approach ρ̂ as closely. In general, the value of γ is
a modelling choice. When designing and testing optimization
algorithms one is primarily interested in the robustness of the
method for a range of γ values.

Note that one can, as above, and discussed in [2], swap
the flow control term for a source control term and no-flux
boundary conditions for Dirichlet, Robin, or periodic bound-
ary conditions without much additional work. The choice of
boundary conditions in the present work is motivated by the
applications of interest.

1. First-Order Optimality System

In order to solve the control problem outlined above, one
has to derive and solve the so-called first-order (necessary)
optimality system. This system is derived using a Lagrangian
approach. The general approach can be found in [61], while
a discussion of the derivation of the present system without
the volume exclusion term jVE can be found in [2]. Here, we
briefly state the Lagrangian formulation and the resulting op-
timality system.

We highlight at this stage that the focus of this section is not
on theoretical questions such as existence and uniqueness of
solutions for the problem (9), which are interesting and impor-
tant questions in their own right, and are highly challenging
for problems with quasi-linear PDE constraints. Indeed, for
non-linear problems of this form, it is possible for numerical
methods to arrive at local minima, even if a global minimum
exists. What is of interest here is a proof-of-concept as to
whether the numerical methods of this paper can generate a
control variable which reduces the cost functional J (ρ,~w)
as opposed to a setting of applying no control, and simulate
realistic particle dynamics. As such, we wish to show that the
technologies presented in this paper may be applied to that
end.

Proceeding formally, the Lagrangian for the system (9) is
defined as

L (ρ,~w,q,q∂Ω) = J (ρ,~w)

−
∫ T

0

∫

Ω

(
∂ρ

∂ t
+∇ · (D(ρ)+ jVE(ρ)+I (ρ)+ρ~w)

)
q d~xdt

−
∫ T

0

∫

∂Ω

(D(ρ)+ jVE(ρ)+I (ρ)+ρ~w) ·~n q∂Ω d~xdt.

Note the introduction of the Lagrange multipliers for impos-
ing the PDE system, with q enforcing the PDE constraint and

q∂Ω the boundary condition. In order to derive the first-order
optimality system, one has to examine

Lq(ρ,~w,q,q∂Ω)h = 0, Lq∂Ω
(ρ,~w,q,q∂Ω)h = 0,

Lρ(ρ,~w,q,q∂Ω)h = 0, L~w(ρ,~w,q,q∂Ω)~h =~0.

Computing Lq(ρ,~w,q,q∂Ω)h = 0 and Lq∂Ω
(ρ,~w,q,q∂Ω)h =

0, one recovers the DDFT model (8) with corresponding
boundary conditions.

Computing Lρ(ρ,~w,q,q∂Ω)h = 0 results in the following
adjoint equation:

∂q

∂ t
= D∗(q)+ j∗VE(q,ρ)+I ∗(q,ρ)−~w ·∇q−ρ + ρ̂

in (0,T )×Ω, (10)

0 =−
1+aρ

(aρ −1)3 ∇q ·~n on (0,T )×∂Ω,

q(T,~x) = 0 on {t = T}×Ω,

where the boundary condition can in principle be simplified to
a Neumann condition. The operators are defined as

D∗(q) :=−∇
2q+∇Vext ·∇q,

I ∗(q,ρ) :=
∫

Ω

ρ(t,~x′)
(
∇~xq(t,~x)−∇~x′q(t,~x

′)
)

·∇V2(|~x−~x′|)d~x′,

and the form of I ∗ results from an assumption of symmetry
of V2. Note that during the derivation an explicit relationship
between the Lagrange multipliers q and q∂Ω is found, so that
q∂Ω is eliminated from the system. The variable q is called
the adjoint variable. Moreover,

j∗VE(q,ρ) :=−A(ρ)∇
2q,

with

A(ρ) :=
aρ

1−aρ
−

aρ(3−aρ)

(aρ −1)3 .

Finally, computing the Fréchet derivative with respect to
~w, that is L~w(ρ,~w,q,q∂Ω)~h, we obtain the descent direction
γ~w + ρ∇q. The first-order optimality system, given by the
PDE constraint in (9), adjoint equation (10), and gradient
equation based on the descent direction (i.e., ~w = − 1

γ ρ∇q),

can be solved with the Newton–Krylov algorithm2,25, in com-
bination with the MultiShape package41, which are both
briefly outlined in Section III. It is also possible to construct
iterative updates to the control variable by searching in the
direction of steepest descent −(γ~w+ρ∇q), as an alternative
to tackling the all-at-once system, and indeed descent meth-
ods are frequently considered for non-linear PDE-constrained
problems. Examples of solving problems of the form (9) with
two different strategies are presented in Section IV.

III. NUMERICAL METHODS

In order to solve the DDFT model (8) and control problem
(9), appropriate numerical methods have to be used that are
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accurate enough to resolve particle-scale information, while
being efficient enough to solve the models in reasonable time.
This difficulty is exacerbated by the non-local integral terms
in the DDFT and control problems, complicated non-linear
and non-local boundary conditions, as well as the solution of
all of these on complicated domains. Moreover, the additional
volume exclusion terms introduced into the DDFT model can
become challenging as the packing fraction η → 1, since the
model becomes singular, and typical numerical methods be-
come unstable. In the following subsections, the approaches
for solving the DDFT model and control problem are dis-
cussed.

A. Pseudospectral and Spectral Element Methods

Pseudospectral methods are an established approach for
solving DDFT problems, such as (8). An overview of
pseudospectral methods can be found in [7] and [59].
2DChebClass21 is a computational framework in MATLAB,
which enables users to solve model equations on simple do-
mains in one and two dimensions using such pseudospectral
approaches. We refer to [1] and [21] for a detailed discussion,
and outline the key features below.

Chebyshev pseudospectral methods are based on polyno-
mial interpolation through non-equispaced collocation points.
This optimal distribution of collocation points avoids the
Runge phenomenon (i.e., large oscillations on the boundary of
the domain caused by interpolation on equispaced points), and
therefore allows accurate approximations using high-order
polynomials. This makes pseudospectral methods highly ac-
curate when approximating smooth functions, and conver-
gence is exponential for analytic functions7. The method pro-
duces small, dense matrices (when compared to large, sparse
matrices typically obtained in finite difference and finite el-
ement methods, for example). Therefore, the method is not
adversely affected when a problem contains non-local inte-
gral terms, such as convolutions, which will necessarily re-
sult in dense matrix systems irrespective of the chosen nu-
merical method. Additionally, one can employ Clenshaw–
Curtis quadrature15 to approximate convolution integrals such
as those arising in (8). This reduces the approximation of
a convolution integral to a matrix–vector multiplication, in
which the matrix can be precomputed and does not have to
be formed at each iteration of a solver, for example, during
timestepping in a PDE solver. An alternative approach is to
use Fast Fourier Transform (FFT) methods, which require that
the Fourier transform and inverse transform have to be taken
at each iteration. Whilst the FFT approach is computationally
cheaper for large numbers of grid points, comparing these two
approaches directly is difficult: Pseudospectral methods typi-
cally use small numbers of points, and so the typical ‘large-N’
computational complexities may not be relevant; and the ap-
plication of FFT to non-periodic domains, such as the com-
plicated domains of interest in the present work, generally
requires that the domains are ‘padded’ and then defined to
be periodic, which both increases the number of computa-
tional points required, and also presents challenges in apply-

ing boundary conditions.
Relevant applications of the pseudospectral framework

include the solution of different DDFT models19,20, DFT
problems54,55, and other PDE applications8,60. The methods
have also been extended to solving three-dimensional prob-
lems and optimal control problems2. Recently, in [41], the
authors extended the pseudospectral framework to include a
spectral element method (SEM). Spectral element methods
utilize a pseudospectral grid on each geometric element and
combine the elements to create the more complicated domain.
There exist different SEM approaches, which can broadly be
classed into Galerkin and patching methods. Galerkin SEM
uses the weak form of the PDE model, while patching meth-
ods treat the strong form of the PDE directly, imposing match-
ing conditions (patching) between individual elements. In the
present work, the latter approach is applied, in line with the
pre-existing framework for solving the strong form of PDEs
on simple domains. A comprehensive introduction to spectral
element methods can be found in [9] and [10].

With the SEM approach one can compute solutions to
DDFT problems on complicated domains without losing the
benefits from pseudospectral approaches. One numerical
implementation is MultiShape, and as for the pseudospec-
tral method, an open-source package is available42. The
MultiShape package utilizes the pseudospectral 2DChebClass
package for simple shapes, which allows precomputation of
several quantities on individual geometric elements that make
up a multishape1. The complicated domain, i.e., multishape,
is constructed by combining these elements and imposing
matching conditions at the intersection boundaries between
them. The chosen matching conditions in the present work
are continuity conditions, enforcing continuity of density and
flux. An example of such a domain can be seen in Figure 4.

Both the 2DChebClass and MultiShape libraries are used in
the present work to discretize DDFT models. A differential–
algebraic equation (DAE) solver can then be applied to solve
the discretized system, such as ode15s in MATLAB.

B. Newton–Krylov and Gradient Descent Approaches

For control problems such as (9), the resulting first-order
optimality system accounts for the PDE constraint in (9), ad-
joint equation (10), and descent direction γ~w + ρ∇q. One
may eliminate the resulting gradient equation by substitut-
ing it into the other two equations to obtain a coupled sys-
tem of PDEs. The spatial discretization of this system is done
as described above, using the 2DChebClass and MultiShape
libraries. However, one is not able to apply standard DAE
solvers since the PDE constraint has an initial condition and
positive Laplacian structure, while the adjoint equation has a
final-time condition and a negative Laplacian term. In order
to tackle the all-at-once system with this forward–backward

1 Note that ‘MultiShape’, with capital letters, refers to the software package,
while a lower-case ‘multishape’ refers to a complex domain of interest.
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structure in time, we apply a bespoke, robust solution strategy.
In line with previous work, we utilize the Newton–Krylov
algorithm25, which minimizes a global-in-time residual vec-
tor. The method is accurate and computationally cheap due to
the spectral-in-space-and-time discretization and efficient pre-
conditioning. The Newton–Krylov method has been applied
to mean-field DDFT optimal control problems on simple do-
mains in [2] and on complicated domains in [41].

We also examine a variant of the gradient descent method
of [58, Algorithm 4.1], tailored to the problem (9). As above,
this is a potent and viable approach for reducing the value of
the cost functional J (ρ,~w) from that obtained from a solu-
tion of the state equation with no control applied, which is a
key aim, and has been applied to a wide range of non-linear
problems in the literature. This algorithm involves succes-
sively solving the state equation (9) for ρ given ~w, solving the
adjoint equation (10) for q given ρ and ~w, moving the con-
trol in the direction of steepest descent multiplied by a mixing
parameter scaled by γ , and a backtracking line-search to en-
sure a decrease in the estimate of the cost functional J (ρ,~w)
at each iteration. The forward and adjoint solves may be ap-
plied using the pseudospectral approach presented in this sec-
tion, in the adjoint case by mapping to an initial value problem
through a transformation of the time variable.

IV. NUMERICAL EXAMPLES

In this section, we present numerical examples for the
DDFT model (8) and the corresponding control problem (9).
In all examples a = π/4 (i.e., σ = 1) unless stated otherwise.
The two-body interaction term is given by

V2(‖~x‖) = κe−‖~x‖r/σ , (11)

where κ and r are specified in the text below; in particular, we
choose r = 1 or r = 2, and κ will always be negative, mod-
elling an attractive, long-range interaction or zero, when we
neglect mean-field interactions. Note that the results are ro-
bust under changes to the interaction potential, external forc-
ing, domain and initial conditions. All tests are computed on
Dell PowerEdge R430 running Scientific Linux 7, four Intel
Xeon E5-2680 v3 2.5GHz cores, 30M Cache, 9.6 GT/s QPI
192 GB RAM, using MATLAB Version 2022b.

A. Solving DDFT Models

In this section problem (8) is solved. The DDFT model is
investigated by comparing it to the mean-field DDFT model
(i.e., by removing the volume exclusion term jVE). Then, the
effect of choosing two different kinds of boundary conditions
is discussed, by comparing the effect of no-flux and periodic
boundary conditions. Finally, a DDFT model is solved on a
multishape domain, for two different sizes of particles. For
all examples the DAE solver ode15s52,53 in MATLAB is used.
The solver’s relative and absolute tolerances are set to 10−7,
unless stated otherwise.

1. Comparison with a Previous Model

In this paper, we have added the term jVE to the mean-
field DDFT model to capture volume exclusion effects. This
means that particles cannot overlap and therefore we expect
that they cannot be packed as densely as in the mean-field
model without the term jVE. We choose weakly attractive par-
ticles that experience a gravitational force given by the poten-
tial Vext = 0.1x2. The interactions are defined by the potential
(11), with r = 2 and κ =−0.5. The temporal–spatial domain
is (0,10)× [0,20]× [0,15], with N1 = N2 = 20 spatial dis-
cretization points. The initial condition for ρ is given by

ρ(0,~x) = ρ̄,

where ρ̄ is a constant, denoting the average particle density.
Each example takes around half a second to solve.

We compare the solution of the model (8) without the vol-
ume exclusion term jVE with the model that includes jVE, for
varying ρ̄ . In Figure 1, this is presented at time t = 10 for
ρ̄ = 0.1, 0.3, 0.5 (i.e., 30, 90, 150 particles, respectively). It
is evident that in all cases the model with volume exclusion
permits less particle clustering than the model without jVE, as
expected. For lower densities, the two models exhibit similar
results, while for higher densities, the two different models
produce very different results. This demonstrates that volume
exclusion can be an important feature when modelling parti-
cle dynamics, such as sedimentation phenomena, as discussed
above.

2. The Choice of Boundary Conditions

In [5], it was investigated how attractive particles im-
pact sedimentation processes, using model (8) with periodic
boundary conditions. The authors chose a temporal–spatial
domain (0,300)× [0,64]× [0,43.5]. The particles experi-
ence the effect of an external gravitational potential given by
Vext = 0.1x2 and particle–particle interactions given by the po-
tential (11), where r = 1, σ = 1, and κ =−3.5.

Two DDFT solutions are presented in [5], both computed
in a periodic box, with the left and right boundaries be-
ing periodic and the top and bottom boundaries modelled as
hard walls, using an infinite external potential for x2 < 0 and
x2 > 43.5. The first result is computed with an average den-
sity ρ̄ = 0.072 (i.e., 188 particles), while the second model
has average density ρ̄ = 0.2 (i.e., 522 particles). The initial
condition is given by

ρ(0,~x) = ρ̄ ±
ξ (~x)

20
ρ̄,

where ξ (~x) is a random field generated (numerically) by sam-
pling from a uniform random variable in [0,1] at each dis-
cretization point. Note that ρ̄ constitutes a steady state for a
system with periodic boundary conditions and no advection,
and the perturbation is added to induce dynamics. However,
for a system with no-flux boundary conditions (such as the
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FIG. 1: Comparison of a model problem with volume
exclusion term jVE present (left) and without volume

exclusion (right) for different average particle densities ρ̄ at
t = 10.

one presented below) this perturbation is technically not re-
quired, since ρ̄ is not a steady state. For both choices of ρ̄ ,
phase separation occurs and the particles form a small num-
ber of clusters. The authors in [5] find that for lower densities,
at later times, the particles form a finite number of clusters
on the bottom of the domain, while for the higher density ex-
ample the particles form a single layer of particles. This is
explained by the fact that the particle density minimizes the
free energy in the system, which in the lower density regime
causes the individual clusters.

Here, we replicate the results with one important adjust-
ment, namely that the hard walls are not imposed by an exter-
nal potential but the no-flux boundary conditions are applied
directly. We choose N1 = N2 = 100 computational points,
since the phase separation is challenging to resolve numeri-
cally. The computational time for the problem with ρ̄ = 0.072
is around 3 hours, while the time to compute the problem with
ρ̄ = 0.2 is around 11 hours. This demonstrates the increased
difficulty of the problem with increased mass in the system.
Figures 2a and 3a show the resulting density profiles at differ-
ent times. These are similar to those reported in [5], and the
predicted clustering for ρ̄ = 0.072, as well as the uniform den-
sity layer for ρ̄ = 0.2 at later times is found. There is a differ-
ence in the density evolution for the model with ρ̄ = 0.2 when
compared to the result in [5]. In [5], individual clusters form
throughout the domain before the density layer forms at later
times. In our simulation, several density layers form, before
the characteristic single density layer is created. These differ-

ences may be caused by the different initial noise, or by the
application of no-flux conditions at the top and bottom walls,
instead of the use of a confining external potential modelling
hard walls.

Next, the same experiments are carried out but with no-flux
conditions on all four boundaries; see Figures 2b and 3b. The
computational times here are around 12 hours for the prob-
lem with ρ̄ = 0.072 and around 16 hours for the problem
with ρ̄ = 0.2. This demonstrates that the problem with no-
flux boundary conditions is more challenging to solve numer-
ically than the problem with periodic conditions. Comparing
the results in Figure 2a and 2b, it is evident that although the
particles form a number of clusters in both cases, they do ex-
hibit differences. Since the periodic problem does not have a
boundary in x1, initially the particles only arrange in lines, be-
fore the particle clusters arrange in an approximately evenly-
spaced manner in x1. In the example with no-flux boundary
conditions, there is now a boundary in the x1 direction and par-
ticles cluster earlier in the simulation and closer to the middle
of the domain. Therefore, at later times, the middle cluster is
larger than the other clusters of particles. A similar effect can
be observed for the simulation with ρ̄ = 0.2 displayed in Fig-
ure 3b. The particles form clusters, rather than lines, due to
the symmetry breaking in x1 caused by the no-flux boundary
conditions. Over time, differently sized, larger clusters form,
before one uniform cluster of particles is created at later times.
This resembles the single particle layer found for the periodic
domain, but the no-flux condition prevents the spread of par-
ticles to the walls at x1 = 0 and x1 = 64. These effects are
caused by the fact that the particles attract each other. In the
domain with no-flux conditions, a larger number of particles
come into contact with each other in the middle of the domain
than on the boundaries, and hence more clusters form in the
centre of the domain. Equivalently, the free energy is lowered
with a higher density in the middle of the domain than at the
boundaries.

3. Solving the DDFT Model on a Multishape

We consider a multishape consisting of three elements; see
Figure 4. Each element contains N1 = N2 = 20 points in each
spatial direction. We choose 10−9 as absolute and relative
tolerances in the DAE solver. The following example mod-
els a silo through which particles are passing. The set-up
is motivated by examples of particle dynamics in silos un-
der gravity6. However, problems such as yeast sedimentation
in brewing vessels62, wastewater treatment in sedimentation
tanks23, and pharmaceutical production in centrifuges30 can
also be modelled using this set-up.

We consider two examples: in the first, the particles
are smaller, in the second they are larger, so that dif-
ferent qualitative behaviour is expected in each case. In
the first example, an external potential is imposed, mod-
elling gravitational forces, as well as repulsive effects
with the silo walls. It is defined by Vext(~x) = 0.15x2 +
ε
(
exp

(
−(dL(~x)/α)2

)
+ exp

(
−(dR(~x)/α)2

))
. The parame-

ters are set to ε = 0.6, α = 0.5, and, at each point ~x in the
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(a) Periodic boundary conditions

(b) No-flux boundary conditions

FIG. 2: Sedimentation of attractive particles in a box with (a) periodic and (b) no-flux boundary conditions, with an average
density of ρ̄ = 0.072.

(a) Periodic boundary conditions

(b) No-flux boundary conditions

FIG. 3: Sedimentation of attractive particles in a box with (a) periodic and (b) no-flux boundary conditions, with an average
density of ρ̄ = 0.2.

domain, dL, dR are the shortest (Euclidean) distances to the
left and right walls of the silo, respectively. The interaction
potential for this example is given by (11), with r = 2, σ = 0.5,
and κ =−0.1. The initial conditions are

ρ(0,~x) =
20 fic∫
Ω

ficd~x
, with fic = x2 +5.

The time interval for this simulation is t ∈ [0,20]. The set-
up for the second example is identical, but with α = σ = 2.

The solution of each example takes around 50 seconds, and
the solutions can be seen in Figure 5. One can observe that
in each example the particles are affected by gravity, are re-
pulsed from the left and right walls, and cluster due to attrac-
tive interaction forces. The key difference between the two
examples is due to the sizes in particles. In Figure 5a, one
can observe that the particles are able to accumulate closer to
the silo walls than those in Figure 5b, since they are smaller.
Moreover, more particles are able to pass through the narrow
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FIG. 4: A multishape with three elements.

part of the silo at the bottom. In the second example particles
accumulate above the narrow tube since they are larger and
therefore cannot easily pass through due to volume exclusion.

B. Solving Control Problems

We are now in the position to consider control problems of
the form (9). In particular, we wish to provide a proof-of-
concept that our pseudospectral and MultiShape approaches
can be applied within all-at-once or gradient descent solvers
for such problems. We first compare the model with volume
exclusion term jVE present and absent, as done for the DDFT
model, before presenting a control problem on a multishape
using the full volume-excluding model. The system is de-
scribed by the PDE constraint in (9), the adjoint equation (10),
and the descent direction. For each problem the performance
of our algorithm is tested by evaluating the cost functional J

before optimization (i.e., when ~w =~0) and after optimization
(using the Newton–Krylov method). The respective values
are denoted by Juc and Jc. We note again the possibility
of encountering local optima, due to the non-linearity of the
problem considered, as opposed to global minima, so the mea-
sure of performance we look for is a reduction of J . One is
required to provide an initial guess for the solver, which is
given by ρ(t,~x) = ρ(0,~x) and q(t,~x) = q(T,~x) = 0 for all t.
Additional inputs for the Newton–Krylov algorithm are the
tolerance 10−16, a maximum of 10 Newton iterations, and a
maximum of 200 GMRES iterations. For the descent algo-
rithm of the form devised in [58] we set a tolerance (to mea-

sure the convergence of the control) of 10−5, an initial mixing
parameter of 0.8, and a minimum allowable mixing parameter
of 10−5.

1. Comparison Between the Two Models

As for the DDFT model, we would like to investigate the ef-
fect of the additional term jVE on the model, and consequently
on a corresponding control problem. For this, we consider
the example presented in Section IV A 1 with ρ̄ = 0.4 (i.e.,
120 particles) and interaction strength κ =−0.3. The desired
state ρ̂ is given by the solution to the DDFT model (8) with
volume exclusion term jVE included and Vext = 0.1x2. The
control problems are solved numerically with Vext = 0, so we
expect the control to act as a gravitational force to drive ρ
towards ρ̂ . We choose a time horizon (0,10), and spatial do-
main [0,20]× [0,15], with N1 = N2 = 20 discretization points
in space, and n = 11 points in time. We note that the Newton–
Krylov results presented here are robust upon increasing the
number of discretization points.

Solving the control problem using the Newton–Krylov
solver, with γ in the range 10−4 to 10−2, takes around 5–10
minutes. Note that the method works for a significantly wider
range of γ but we restrict the range here to allow a comparison
with the descent method58, within which the PDE solver used
demonstrated robustness for a smaller range of γ . In Table I
we present the cost for the uncontrolled (Juc) and controlled
problems (Jc) both with (top) and without (bottom) volume
exclusion. Note the significant reduction of the cost functional
under imposition of non-zero control.

In Figure 6, the solutions for both models with γ = 10−3

are presented. It is evident that while the particle distribu-
tions are similar with and without volume exclusion, due to
the choice of γ , the controls for the two models act in differ-
ent ways. While the control for the model including jVE acts
downwards, in lieu of the gravitational force, the control of
the model without volume exclusion invests more control to
spread the particles out, since in this model the particles are
allowed to cluster more tightly than in the target state, created
with the volume-excluding model.

One validation of our results was obtained by inserting the
control from our Newton–Krylov method into the descent al-
gorithm58. In all cases presented, the resulting control dif-
fers by less than 2%, measured in a relative L2 norm in time
and space. The descent algorithm typically takes around 1
minute to run, primarily a consequence of the extremely ef-
ficient pseudospectral solver. We also found that the descent
algorithm converges to these solutions when the initial guess
is perturbed somewhat away from the result from the Newton–
Krylov scheme. However, as discussed, since the problem is
non-linear, there is a possibility of encountering local min-
ima. For example, we found that starting with an initial
guess of zero control for the descent algorithm in the case
γ = 10−2 with volume exclusion resulted in a control with cost
9.08× 10−2, which is slightly better than that found by our
Newton–Krylov approach. In contrast, for γ = 10−3 the cost
resulting from an initial guess of zero control was larger than
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(a) Small particles, σ = 0.5.

(b) Large particles, σ = 2.

FIG. 5: Two examples of particle dynamics under gravity with volume exclusion: (a) smaller particles with σ = 0.5, (b) larger
particles with σ = 2.

γ = 10−4 γ = 10−3 γ = 10−2

Juc 1.03 1.03 1.03
Jc 1.55×10−3 1.42×10−2 1.15×10−1

Juc 1.29 1.29 1.29
Jc 4.36×10−3 1.19×10−2 7.87×10−2

TABLE I: Values of the cost functional J for a control
problem, computed on a box with no-flux boundary

conditions with (top) and without (bottom) volume exclusion.
The value of the cost functional of the uncontrolled problem
with ~w =~0, denoted by Juc, is compared to the cost of the

controlled problem Jc for different values of γ .

that found with the Newton–Krylov method. Additionally, the
descent algorithm failed to converge for the zero initial guess
(due to failure of the PDE solver under large perturbations of
the control) for γ = 10−4 and γ = 10−1; we believe this issue
could be circumvented by using more discretization points in
the PDE solver, or a bespoke choice of the mixing parameter,
but this would significantly increase the computational time of
the descent algorithm and require problem-dependent insight.
We highlight that our Newton–Krylov scheme does succeed
in reducing the cost functional for this problem, under a wide
range of initial guesses of the density and adjoint, as well as
choices of discretization.

Note that we do not choose a ρ̂ created from a DDFT model
without volume exclusion. The reason for this is that, for the

problem with the term jVE present, the control variable would
attempt to push the particles to cluster more tightly than the
volume exclusion property of this model allows. This would
cause numerical issues, since ρ → 1/a (i.e., η → 1) in this
case, causing the term jVE to become very large and numeri-
cally unstable.

2. An Example using MultiShape

We now solve the control problem (9) numerically on a
MultiShape domain, consisting of one quadrilateral and one
wedge element, using the Newton–Krylov scheme. The time
horizon is (0,2). Each element is discretized by N1 = N2 = 20
collocation points, and n = 11. The initial condition for ρ is

ρ(0,~x) = Z−1 exp(−0.5(x1 −0.75)2 −0.5(x2 −3.3)2),

where Z is a normalization constant, which results in an aver-
age density of ρ̄ = 0.1. The particles in this problem do not
experience any particle–particle interactions (i.e., κ = 0), and
no external potential. However, the desired state ρ̂ is designed
by computing the model problem (8), including interaction
potential (11), with r = 2 and κ = −1, as well as external
potential Vext = 0.5x2. Therefore, we expect the control ~w to
simulate attractive particle–particle and gravitational forces.
Computing the solution for γ = 10−3 takes around 30 minutes
and the result is displayed in Figure 7. It is evident that the
control forces the particles together and down the channel, as
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(a) Control problem (9), with volume exclusion term jVE present.

(b) Control problem (9), without volume exclusion.

FIG. 6: Comparison between the solution ρ and control ~w for γ = 10−3 with the volume exclusion term jVE (a) included and (b)
excluded. Shown are computed density ρ (colour) and superimposed control ~w (arrows).

expected. In Table II, the resulting values of the cost func-
tional for different choices of γ are compared to those of the
uncontrolled problem. As expected, these become closer as
the penalty for applying the control (γ) is increased.

γ = 10−5 γ = 10−3 γ = 10−1

Juc 2.07×10−4 2.07×10−4 2.07×10−4

Jc 3.13×10−6 8.99×10−5 2.05×10−4

TABLE II: Values of the cost functional J for a control
problem, computed on a multishape with no-flux boundary

conditions and volume exclusion. The value of the cost
functional of the uncontrolled problem with ~w =~0, denoted
by Juc, is compared to the cost of the controlled problem

Jc for different values of γ .

V. SUMMARY

The resolution of sedimentation processes using the DDFT
methodology is a problem of keen interest. Motivated by
this, the present work illustrates that extensions of the DDFT
model can be tackled with the method developed in [2, 41]. It
was demonstrated that the framework is able to solve DDFT
models with additional terms that describe volume exclusion,
as well as corresponding control problems. The qualitative
differences in solutions of models with and without volume
exclusion were investigated, to demonstrate the importance of
including such effects to accurately describe real-world hard
particle systems. Moreover, the effect of different boundary

conditions was studied, comparing periodic and no-flux con-
ditions, demonstrating that the results in modelling sedimen-
tation and clustering dynamics are severely impacted by the
choice of boundary conditions imposed.

A key motivation was to model hard particle dynamics on
complicated domains that naturally arise in real-world appli-
cations. Since boundary conditions and volume exclusion
demonstrably affect the dynamics, the ability to accurately
apply the correct conditions needs to be included in the cho-
sen methodology, which has been done successfully in the
present work. Moreover, the present work not only addresses
the question of how to simulate such processes, but also pro-
vides a framework for the control of hard particle dynamics on
complicated domains, including no-flux boundary conditions.
Production set-up in a range of applications, such as brew-
ing, wastewater treatment, or processes in the pharmaceutical
industry, can potentially be optimized using this framework.

It is evident that this extended model is numerically more
challenging to solve than the mean-field DDFT, due to the
terms that prescribe the volume exclusion. In order to solve
a model of this form, more care has to be taken in ensuring
that ρ does not become too large, i.e., that the packing frac-
tion η does not approach unity, in any part of the domain
at any time, and in particular that 0 < ρ < 1/a. This ex-
tended DDFT model furthermore raises new theoretical ques-
tions about existence, uniqueness, and regularity of solutions,
due to the form of the term jVE. Since jVE becomes unbounded
as ρ → 1/a, such questions require careful examination in fu-
ture work.

The solution of a corresponding control problem posed ad-
ditional challenges that had to be addressed. First, the deriva-
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FIG. 7: The computed density ρ (colour) with superimposed control ~w (arrows) for a problem with volume exclusion effects.

tion of the first-order optimality system was more involved
than that for the mean-field DDFT. The successful numeri-
cal solution of the control problem involving this extended
model depended on both the choice ρ̂ and the correspond-
ing ρ . While this is the case for many optimal control prob-
lems, for the present model the state ρ is required to satisfy
0 < ρ < 1/a for all (t,~x) ∈ (0,T )×Ω. Moreover, the choice
of ρ̂ should likely also satisfy these bounds, since otherwise
the control may act to push ρ outside its prescribed bounds
towards ρ̂ . In order to ensure these conditions on ρ are met,
one could extend this methodology to include state or control
constraints in future work.

Notwithstanding these open questions, the present imple-
mentation enables the modelling of volume exclusion effects
on complicated domains that are important for capturing many
real-world processes accurately. It furthermore demonstrates
that the method introduced in [2,41] is, in principle, applicable
to some of the more complicated extensions of DDFT, such as
those discussed in [56].

DATA AVAILABILITY

The code required to reproduce the results of this
work is available at https://bitbucket.org/bdgoddard/
multishapesedimentation/src/.
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