963 research outputs found

    Pigment Migration and Adaptation in the Eye of the Squid, Loligo pealei

    Full text link

    Infrared Imaging of Capella with the IOTA Closure Phase Interferometer

    Get PDF
    We present infrared aperture synthesis maps produced with the upgraded IOTA interferometer. Michelson interferograms on the close binary system Capella (Alpha Aur) were obtained in the H-band between 2002 November 12 and 16 using the IONIC3 beam combiner. With baselines of 15m < B < 38m, we were able to determine the relative position of the binary components with milliarcsecond (mas) precision and to track their movement along the approx. 14 degree arc covered by our observation run. We briefly describe the algorithms used for visibility and closure phase estimation. Three different Hybrid Mapping and Bispectrum Fitting techniques were implemented within one software framework and used to reconstruct the source brightness distribution. By dividing our data into subsets, the system could be mapped at three epochs, revealing the motion of the stars. The precise position of the binary components was also determined with model fits, which in addition revealed I_Aa/I_Ab=1.49 +/- 0.10 and apparent stellar uniform-disk (UD) diameters of Theta_Aa=8.9 +/- 0.6 mas and Theta_Ab=5.8 +/- 0.8 mas. To improve the u, v-plane coverage, we compensated this orbital motion by applying a rotation-compensating coordinate transformation. The resulting model-independent map with a beam size of 5.4 x 2.6 mas allows the resolution of the stellar surfaces of the Capella giants themselves.Comment: Accepted by the Astronomical Journal (2005-03-21

    Few Skewed Disks Found in First Closure-Phase Survey of Herbig Ae/Be stars

    Get PDF
    Using the 3-telescope IOTA interferometer on Mt. Hopkins, we report results from the first near-infrared (lambda=1.65 mu) closure-phase survey of Young Stellar Objects (YSOs). These closure phases allow us to unambiguously detect departures from centrosymmetry (i.e., skew) in the emission pattern from YSO disks on the scale of ~4 milliarcseconds, expected from generic ``flared disk'' models. Six of fourteen targets showed small, yet statistically-significant, non-zero closure phases, with largest values from the young binary system MWC 361-A and the (pre-main sequence?) Be star HD 45677. Our observations are quite sensitive to the vertical structure of the inner disk and we confront the predictions of the ``puffed-up inner wall'' models of Dullemond, Dominik, and Natta (DDN). Our data support disks models with curved inner rims because the expected emission appear symmetrically-distributed around the star over a wide range of inclination angles. In contrast, our results are incompatible with the models possessing vertical inner walls because they predict extreme skewness (i.e., large closure phases) from the near-IR disk emission that is not seen in our data. In addition, we also present the discovery of mysterious H-band ``halos'' (~5-10% of light on scales 0.01-0.50 arcsec) around a few objects, a preliminary ``parametric imaging'' study for HD 45677, and the first astrometric orbit for the young binary MWC 361-A.Comment: Accepted for publication in Astrophysical Journa

    An X-ray Census of Fast Radio Burst Host Galaxies: Constraints on AGN and X-ray Counterparts

    Get PDF
    We present the first X-ray census of fast radio burst (FRB) host galaxies to conduct the deepest search for AGN and X-ray counterparts to date. Our sample includes seven well-localized FRBs with unambiguous host associations and existing deep Chandra observations, including two events for which we present new observations. We find evidence for AGN in two FRB host galaxies based on the presence of X-ray emission coincident with their centers, including the detection of a luminous (LX5×1042 erg s1L_X \approx 5 \times 10^{42} \ \rm erg \ s^{-1}) X-ray source at the nucleus of FRB20190608B's host, for which we infer an SMBH mass of MBH108 M\rm M_{\rm BH} \sim 10^{8} \ M_{\odot} and an Eddington ratio Lbol/LEdd0.02L_{\rm bol}/ L_{\rm Edd} \approx 0.02, characteristic of geometrically thin disks in Seyfert galaxies. We also report nebular emission line fluxes for 24 highly secure FRB hosts (including 10 hosts for the first time), and assess their placement on a BPT diagram, finding that FRB hosts trace the underlying galaxy population. We further find that the hosts of repeating FRBs are not confined to the star-forming locus, contrary to previous findings. Finally, we place constraints on associated X-ray counterparts to FRBs in the context of ultraluminous X-ray sources (ULXs), and find that existing X-ray limits for FRBs rule out ULXs brighter than LX1040 erg s1L_X \gtrsim 10^{40} \ \rm erg \ s^{-1}. Leveraging the CHIME/FRB catalog and existing ULX catalogs, we search for spatially coincident ULX-FRB pairs. We identify two ULX in the galaxy NGC 2633 that are spatially coincident with the repeating FRB20180908B and for which the DM-inferred redshift is comparable to the distance of the galaxy, assuming a DMhost\rm DM_{host} contribution of 150 pc cm3150 \ \rm pc \ cm^{-3}.Comment: 15 pages, 5 figures; submitted to Ap

    Eosinophils Are Important for Protection, Immunoregulation and Pathology during Infection with Nematode Microfilariae

    Get PDF
    Eosinophil responses typify both allergic and parasitic helminth disease. In helminthic disease, the role of eosinophils can be both protective in immune responses and destructive in pathological responses. To investigate whether eosinophils are involved in both protection and pathology during filarial nematode infection, we explored the role of eosinophils and their granule proteins, eosinophil peroxidase (EPO) and major basic protein-1 (MBP-1), during infection with Brugia malayi microfilariae. Using eosinophil-deficient mice (PHIL), we further clarify the role of eosinophils in clearance of microfilariae during primary, but not challenge infection in vivo. Deletion of EPO or MBP-1 alone was insufficient to abrogate parasite clearance suggesting that either these molecules are redundant or eosinophils act indirectly in parasite clearance via augmentation of other protective responses. Absence of eosinophils increased mast cell recruitment, but not other cell types, into the broncho-alveolar lavage fluid during challenge infection. In addition absence of eosinophils or EPO alone, augmented parasite-induced IgE responses, as measured by ELISA, demonstrating that eosinophils are involved in regulation of IgE. Whole body plethysmography indicated that nematode-induced changes in airway physiology were reduced in challenge infection in the absence of eosinophils and also during primary infection in the absence of EPO alone. However lack of eosinophils or MBP-1 actually increased goblet cell mucus production. We did not find any major differences in cytokine responses in the absence of eosinophils, EPO or MBP-1. These results reveal that eosinophils actively participate in regulation of IgE and goblet cell mucus production via granule secretion during nematode-induced pathology and highlight their importance both as effector cells, as damage-inducing cells and as supervisory cells that shape both innate and adaptive immunity

    Representations of sport in the revolutionary socialist press in Britain, 1988–2012

    Get PDF
    This paper considers how sport presents a dualism to those on the far left of the political spectrum. A long-standing, passionate debate has existed on the contradictory role played by sport, polarised between those who reject it as a bourgeois capitalist plague and those who argue for its reclamation and reformation. A case study is offered of a political party that has consistently used revolutionary Marxism as the basis for its activity and how this party, the largest in Britain, addresses sport in its publications. The study draws on empirical data to illustrate this debate by reporting findings from three socialist publications. When sport did feature it was often in relation to high profile sporting events with a critical tone adopted and typically focused on issues of commodification, exploitation and alienation of athletes and supporters. However, readers’ letters, printed in the same publications, revealed how this interpretation was not universally accepted, thus illustrating the contradictory nature of sport for those on the far left

    Advancing Tests of Relativistic Gravity via Laser Ranging to Phobos

    Get PDF
    Phobos Laser Ranging (PLR) is a concept for a space mission designed to advance tests of relativistic gravity in the solar system. PLR's primary objective is to measure the curvature of space around the Sun, represented by the Eddington parameter γ\gamma, with an accuracy of two parts in 10710^7, thereby improving today's best result by two orders of magnitude. Other mission goals include measurements of the time-rate-of-change of the gravitational constant, GG and of the gravitational inverse square law at 1.5 AU distances--with up to two orders-of-magnitude improvement for each. The science parameters will be estimated using laser ranging measurements of the distance between an Earth station and an active laser transponder on Phobos capable of reaching mm-level range resolution. A transponder on Phobos sending 0.25 mJ, 10 ps pulses at 1 kHz, and receiving asynchronous 1 kHz pulses from earth via a 12 cm aperture will permit links that even at maximum range will exceed a photon per second. A total measurement precision of 50 ps demands a few hundred photons to average to 1 mm (3.3 ps) range precision. Existing satellite laser ranging (SLR) facilities--with appropriate augmentation--may be able to participate in PLR. Since Phobos' orbital period is about 8 hours, each observatory is guaranteed visibility of the Phobos instrument every Earth day. Given the current technology readiness level, PLR could be started in 2011 for launch in 2016 for 3 years of science operations. We discuss the PLR's science objectives, instrument, and mission design. We also present the details of science simulations performed to support the mission's primary objectives.Comment: 25 pages, 10 figures, 9 table

    Automated Docking Screens: A Feasibility Study

    Get PDF
    Molecular docking is themost practical approach to leverage protein structure for ligand discovery, but the technique retains important liabilities that make it challenging to deploy on a large scale. We have therefore created an expert system, DOCKBlaster, to investigate the feasibility of full automation. The method requires a PDB code, sometimes with a ligand structure, and from that alone can launch a full screen of large libraries. A critical feature is self-assessment, which estimates the anticipated reliability of the automated screening results using pose fidelity and enrichment. Against common benchmarks, DOCKBlaster recapitulates the crystal ligand pose within 2 A ̊ rmsd 50-60 % of the time; inferior to an expert, but respectrable. Half the time the ligand also ranked among the top 5 % of 100 physically matched decoys chosen on the fly. Further tests were undertaken culminating in a study of 7755 eligible PDB structures. In 1398 cases, the redocked ligand ranked in the top 5 % of 100 property-matched decoys while also posing within 2 A ̊ rmsd, suggesting that unsupervised prospective docking is viable. DOCK Blaster is available a
    corecore