100 research outputs found

    A Critical Review of Consumer Wearables, Mobile Applications, and Equipment for Providing Biofeedback, Monitoring Stress, and Sleep in Physically Active Populations

    Get PDF
    The commercial market for technologies to monitor and improve personal health and sports performance is ever expanding. A wide range of smart watches, bands, garments, and patches with embedded sensors, small portable devices and mobile applications now exist to record and provide users with feedback on many different physical performance variables. These variables include cardiorespiratory function, movement patterns, sweat analysis, tissue oxygenation, sleep, emotional state, and changes in cognitive function following concussion. In this review, we have summarized the features and evaluated the characteristics of a cross-section of technologies for health and sports performance according to what the technology is claimed to do, whether it has been validated and is reliable, and if it is suitable for general consumer use. Consumers who are choosing new technology should consider whether it (1) produces desirable (or non-desirable) outcomes, (2) has been developed based on real-world need, and (3) has been tested and proven effective in applied studies in different settings. Among the technologies included in this review, more than half have not been validated through independent research. Only 5% of the technologies have been formally validated. Around 10% of technologies have been developed for and used in research. The value of such technologies for consumer use is debatable, however, because they may require extra time to set up and interpret the data they produce. Looking to the future, the rapidly expanding market of health and sports performance technology has much to offer consumers. To create a competitive advantage, companies producing health and performance technologies should consult with consumers to identify real-world need, and invest in research to prove the effectiveness of their products. To get the best value, consumers should carefully select such products, not only based on their personal needs, but also according to the strength of supporting evidence and effectiveness of the products

    Effect of ageing and exercise training on myokine expression responses to acute exercise

    Get PDF
    Age-related muscle loss is a major contributor to falls, fraility and mortality. It has been widely suggested that chronic, age-related inflammation contributes to the gradual loss of skeletal muscle mass that occurs with ageing. Indeed, ageing is associated with elevations in a number of circulating inflammatory proteins, many of which have detrimental effects on skeletal muscle growth and protein balance. Exercise training has been shown to reduce chronic inflammation and, therefore, may represent an appropriate means to reduce age-related inflammation and counteract sarcopenia. Yet few studies have evaluated the effect of aging on skeletal muscle expression of inflammatory proteins and the effect of acute and repeated exercise on these factors. The aim of the current study was to determine the effect of 12 weeks of resistance exercise training on the levels of myokines within skeletal muscle, both at rest and following an acute bout of exercise and to examine how these responses may vary in young and older subjects, thus evaluating the potential for exercise to reduce age-related muscle inflammation. Six healthy young (aged 18-25 years) and 8 healthy older men (aged 60-75 years) completed 12 weeks of resistance exercise training. Muscle biopsies were collected before and 2 h after an acute exercise bout at the beginning and the end of the 12 week training period. Muscle tissue was analyzed for the expression of key inflammatory (MCP-1, IL-8, IL-6 and TNF-α) and anti-inflammatory cytokines (IL-10, IL-13 and IL-4) via bead-based multiplex analysis. Acute exercise increased the expression of inflammatory myokines, while anti-inflammatory myokines remained unchanged. In contrast to the hypothesis for this study, neither age nor training had a significant effect on the expression of myokines within skeletal muscle either in the resting state or 2 hours following exercise. However, older individuals displayed an increased inflammatory response to exercise prior to training when compared to younger individuals. Twelve weeks of resistance exercise training appeared to normalize this difference. Given the variability in myokine levels between individuals and the small subject number in the current study, further research is required to confirm this findin

    Effect of carbohydrate feeding on the bone metabolic response to running

    Get PDF
    Bone resorption is increased after running, with no change in bone formation. Feeding during exercise might attenuate this increase, preventing associated problems for bone. This study investigated the immediate and short-term bone metabolic responses to carbohydrate (CHO) feeding during treadmill running. Ten men completed two 7-day trials, once being fed CHO (8% glucose immediately before, every 20 min during, and immediately after exercise at a rate of 0.7 g CHO·kg body mass-1·h-1) and once being fed placebo (PBO). On day 4 of each trial, participants completed a 120-min treadmill run at 70% of maximal oxygen consumption (VO2 max). Blood was taken at baseline (BASE), immediately after exercise (EE), after 60 (R1) and 120 (R2) min of recovery, and on three follow-up days (FU1-FU3). Markers of bone resorption [COOH-terminal telopeptide region of collagen type 1 (β-CTX)] and formation [NH2-terminal propeptides of procollagen type 1 (P1NP)] were measured, along with osteocalcin (OC), parathyroid hormone (PTH), albumin-adjusted calcium (ACa), phosphate, glucagon-like peptide-2 (GLP-2), interleukin-6 (IL-6), insulin, cortisol, leptin, and osteoprotogerin (OPG). Area under the curve was calculated in terms of the immediate (BASE, EE, R1, and R2) and short-term (BASE, FU1, FU2, and FU3) responses to exercise. β-CTX, P1NP, and IL-6 responses to exercise were significantly lower in the immediate postexercise period with CHO feeding compared with PBO (β-CTX: P=0.028; P1NP: P=0.021; IL-6: P=0.036), although there was no difference in the short-term response (β-CTX: P=0.856; P1NP: P=0.721; IL-6: P=0.327). No other variable was significantly affected by CHO feeding during exercise. We conclude that CHO feeding during exercise attenuated the β-CTX and P1NP responses in the hours but not days following exercise, indicating an acute effect of CHO feeding on bone turnover

    Where Does Blood Flow Restriction Fit in the Toolbox of Athletic Development? A Narrative Review of the Proposed Mechanisms and Potential Applications

    Get PDF
    Blood flow-restricted exercise is currently used as a low-intensity time-efficient approach to reap many of the benefits of typical high-intensity training. Evidence continues to lend support to the notion that even highly trained individuals, such as athletes, still benefit from this mode of training. Both resistance and endurance exercise may be combined with blood flow restriction to provide a spectrum of adaptations in skeletal muscle, spanning from myofibrillar to mitochondrial adjustments. Such diverse adaptations would benefit both muscular strength and endurance qualities concurrently, which are demanded in athletic performance, most notably in team sports. Moreover, recent work indicates that when traditional high-load resistance training is supplemented with low-load, blood flow-restricted exercise, either in the same session or as a separate training block in a periodised programme, a synergistic and complementary effect on training adaptations may occur. Transient reductions in mechanical loading of tissues afforded by low-load, blood flow-restricted exercise may also serve a purpose during de-loading, tapering or rehabilitation of musculoskeletal injury. This narrative review aims to expand on the current scientific and practical understanding of how blood flow restriction methods may be applied by coaches and practitioners to enhance current athletic development models.publishedVersionPaid open acces

    Chronic psychological stress was not ameliorated by omega-3 eicosapentaenoic acid (EPA)

    Get PDF
    Background: Chronic psychological stress and mental health disorders are endemic in Western culture where population dietary insufficiencies of omega-3 fatty acids (n-3FA) from seafood have been observed. Objective: This study was designed to test for a causal relationship between one of the most active components of fish oil, eicosapentaenoic acid (EPA), and chronic psychological stress. Method: A randomized double-blind, placebo-controlled clinical trial with parallel-assignment to two groups was designed (Trial Id: ACTRN12610000404022). The interventions were four EPA-rich fish oil capsules per day, delivering 2.2 g/d EPA (and 0.44 g/d DHA), or identical placebo (low-phenolic olive oil capsules with 5% fish oil to aid blinding). The primary outcome was the between-group difference on the Perceived Stress Scale (PSS-10) after 12 weeks supplementation. An a priori power analysis determined that group sizes of 43 would provide 80% power to detect a significant between-group difference of 12.5%, at α = 0.05. Ninety community members (64 females, 26 males) reporting chronic work stress were recruited via public advertising in northern NSW, Australia. Results: At baseline the omega-3 index (EPA + DHA as % to total fatty acids in red blood cell membranes) was 5.2% in both groups (SD = 1.6% control group; 1.8% active group). After supplementation this remained stable at 5.3% (SD = 1.6%) for the control group but increased to 8.9% (SD = 1.5%) for the active group, demonstrating successful incorporation of EPA into cells. Intention-to-treat (ITT) analysis found no significant between-group differences in PSS outcome scores post-intervention (b = 1.21, p = 0.30) after adjusting for sex (b = 2.36, p = 0.079), baseline PSS (b = 0.42, p = 0.001) and baseline logEPA [b = 1.41, p = 0.185; F(3, 86) = 8.47, p \u3c 0.01, n = 89, R-square = 0.243]. Discussion: Treatment increased cell membrane EPA but, contrary to the hypothesis, there was no effect on perceived stress. Limitations included an imbalance of gender in groups after randomization (68% of the males were in the placebo group). While we found no significant interaction between sex and group on the outcome after adjusting for baseline PSS, larger studies with groups stratified for gender may be required to further confirm these findings. Conclusion: This study demonstrated that 2. 2 g/day of EPA for 12 weeks did not reduce chronic psychological stress

    Un "simposio di sapienza e affetto"

    Get PDF
    Muscle hypertrophy occurs following increased protein synthesis, which requires activation of the ribosomal complex. Additionally, increased translational capacity via elevated ribosomal RNA (rRNA) synthesis has also been implicated in resistance training-induced skeletal muscle hypertrophy. The time course of ribosome biogenesis following resistance exercise (RE) and the impact exerted by differing recovery strategies remains unknown. In the present study, the activation of transcriptional regulators, the expression levels of pre-rRNA, and mature rRNA components were measured through 48 h after a single-bout RE. In addition, the effects of either low-intensity cycling (active recovery, ACT) or a cold-water immersion (CWI) recovery strategy were compared. Nine male subjects performed two bouts of high-load RE randomized to be followed by 10 min of either ACT or CWI. Muscle biopsies were collected before RE and at 2, 24, and 48 h after RE. RE increased the phosphorylation of the p38-MNK1-eIF4E axis, an effect only evident with ACT recovery. Downstream, cyclin D1 protein, total eIF4E, upstream binding factor 1 (UBF1), and c-Myc proteins were all increased only after RE with ACT. This corresponded with elevated abundance of the pre-rRNAs (45S, ITS-28S, ITS-5.8S, and ETS-18S) from 24 h after RE with ACT. In conclusion, coordinated upstream signaling and activation of transcriptional factors stimulated pre-rRNA expression after RE. CWI, as a recovery strategy, markedly blunted these events, suggesting that suppressed ribosome biogenesis may be one factor contributing to the impaired hypertrophic response observed when CWI is used regularly after exercise

    Discrimination of Methionine Sulfoxide and Sulfone by Human Neutrophil Elastase

    Get PDF
    Human neutrophil elastase (HNE) is a uniquely destructive serine protease with the ability to unleash a wave of proteolytic activity by destroying the inhibitors of other proteases. Although this phenomenon forms an important part of the innate immune response to invading pathogens, it is responsible for the collateral host tissue damage observed in chronic conditions such as chronic obstructive pulmonary disease (COPD), and in more acute disorders such as the lung injuries associated with COVID-19 infection. Previously, a combinatorially selected activity-based probe revealed an unexpected substrate preference for oxidised methionine, which suggests a link to oxida-tive pathogen clearance by neutrophils. Here we use oxidised model substrates and inhibitors to confirm this observation and to show that neutrophil elastase is specifically selective for the di-oxygenated methionine sulfone rather than the mono-oxygenated methionine sulfoxide. We also posit a critical role for ordered solvent in the mechanism of HNE discrimination between the two oxidised forms methionine residue. Preference for the sulfone form of oxidised methionine is especially significant. While both host and pathogens have the ability to reduce methionine sulfoxide back to methionine, a biological pathway to reduce methionine sulfone is not known. Taken to-gether, these data suggest that the oxidative activity of neutrophils may create rapidly cleaved elas-tase “super substrates” that directly damage tissue, while initiating a cycle of neutrophil oxidation that increases elastase tissue damage and further neutrophil recruitment

    Acute Resistance Exercise Induces Sestrin2 Phosphorylation and p62 Dephosphorylation in Human Skeletal Muscle

    Get PDF
    Sestrins (1, 2, 3) are a family of stress-inducible proteins capable of attenuating oxidative stress, regulating metabolism, and stimulating autophagy. Sequestosome1 (p62) is also a stress-inducible multifunctional protein acting as a signaling hub for oxidative stress and selective autophagy. It is unclear whether Sestrin and p62Ser403 are regulated acutely or chronically by resistance exercise (RE) or training (RT) in human skeletal muscle. Therefore, the acute and chronic effects of RE on Sestrin and p62 in human skeletal muscle were examined through two studies. In Study 1, nine active men (22.1 ± 2.2 years) performed a bout of single-leg strength exercises and muscle biopsies were collected before, 2, 24, and 48 h after exercise. In Study 2, 10 active men (21.3 ± 1.9 years) strength trained for 12 weeks (2 days per week) and biopsies were collected pre- and post-training. Acutely, 2 h postexercise, phosphorylation of p62Ser403 was downregulated, while there was a mobility shift of Sestrin2, indicative of increased phosphorylation. Forty-eight hours postexercise, the protein expression of both Sestrin1 and total p62 increased. Chronic exercise had no impact on the gene or protein expression of Sestrin2/3 or p62, but Sestrin1 protein was upregulated. These findings demonstrated an inverse relationship between Sestrin2 and p62 phosphorylation after a single bout of RE, indicating they are transiently regulated. Contrarily, 12 weeks of RT increased protein expression of Sestrin1, suggesting that despite the strong sequence homology of the Sestrin family, they are differentially regulated in response to acute RE and chronic RT

    Acute effects of nitrate-rich beetroot juice on blood pressure, hemostasis and vascular inflammation markers in healthy older adults: A randomized, placebo-controlled crossover study

    Get PDF
    Aging is associated with a vasoconstrictive, pro-coagulant, and pro-inflammatory profile of arteries and a decline in the bioavailability of the endothelium-derived molecule nitric oxide. Dietary nitrate elicits vasodilatory, anti-coagulant and anti-inflammatory effects in younger individuals, but little is known about whether these benefits are evident in older adults. We investigated the effects of 140 mL of nitrate-rich (HI-NI; containing 12.9 mmol nitrate) versus nitrate-depleted beetroot juice (LO-NI; containing ≤0.04 mmol nitrate) on blood pressure, blood coagulation, vascular inflammation markers, plasma nitrate and nitrite before, and 3 h and 6 h after ingestion in healthy older adults (five males, seven females, mean age: 64 years, age range: 57–71 years) in a randomized, placebo-controlled, crossover study. Plasma nitrate and nitrite increased 3 and 6 h after HI-NI ingestion (p < 0.05). Systolic, diastolic and mean arterial blood pressure decreased 3 h relative to baseline after HI-NI ingestion only (p < 0.05). The number of blood monocyte-platelet aggregates decreased 3 h after HI-NI intake (p < 0.05), indicating reduced platelet activation. The number of blood CD11b-expressing granulocytes decreased 3 h following HI-NI beetroot juice intake (p < 0.05), suggesting a shift toward an anti-adhesive granulocyte phenotype. Numbers of blood CD14++CD16+ intermediate monocyte subtypes slightly increased 6 h after HI-NI beetroot juice ingestion (p < 0.05), but the clinical implications of this response are currently unclear. These findings provide new evidence for the acute effects of nitrate-rich beetroot juice on circulating immune cells and platelets. Further long-term research is warranted to determine if these effects reduce the risk of developing hypertension and vascular inflammation with aging

    A systematic review and meta-analysis of the safety, feasibility and effect of exercise in women with stage II+ breast cancer

    Get PDF
    To systematically evaluate the safety, feasibility and effect of exercise among women with stage II+ breast cancer.CINAHL, Cochrane, Ebscohost, MEDLINE, Pubmed, ProQuest Health and Medical Complete, ProQuest Nursing and Allied Health Source, Science Direct and SPORTDiscus were searched for articles published prior to March 1, 2017.Randomised, controlled, exercise trials involving at least 50% of women diagnosed with stage II+ breast cancer were included.Risk of bias was assessed and adverse event severity was classified using the Common Terminology Criteria. Feasibility was evaluated by computing median (range) recruitment, withdrawal and adherence rates. Meta-analyses were performed to evaluate exercise safety and effects on health outcomes only. The influence of intervention characteristics (mode, supervision, duration and timing) on exercise outcomes were also explored.There were no differences in adverse events between exercise and usual care (risk difference
    • …
    corecore