1,562 research outputs found

    Effects of Elevated pCO2 and Irradiance on Growth, Photosynthesis and Calcification in Halimeda discoidea

    Get PDF
    Ocean acidification (OA) effects on photophysiology and calcification were examined in Halimeda discoidea, a calcifying macroalga that produces tropical reef sediments. Photosynthetic parameters, including maximum photosynthetic rate (Pmax), photosynthetic efficiency (α) and compensating irradiance (Ic) were determined in short-term assays on live thalli after a 10 d exposure to 4 levels of CO2 partial pressures (pCO2; 491, 653, 982 and 1201 µatm) under saturating (300 µmol photons m-2 s-1) and sub-saturating (90 µmol photons m-2 s-1) irradiance in an aquaria study. Morphology of aragonite crystals produced in segments formed on adult thalli was characterized using scanning electron microscopy (SEM). Further, we examined crystal morphology and changes in inorganic content of non-living segments exposed to elevated (1201 µatm) and ambient pCO2 for 27 d to assess OA effects on carbonate sediments generated from H. discoidea. Even though Pmax was higher under elevated pCO2, this photophysiological response did not result in higher calcification rates. Based on crystal measurements and SEM imagery, aragonite crystals within new segments were indistinguishable across pCO2 and irradiance treatments. Under high irradiance, new segments showed a greater investment in organic versus inorganic production. Non-living segments contained narrower crystals after 27 d exposure to elevated pCO2 relative to controls, but differences were small (0.03 µm) and did not contribute significantly to changes in normalized biomass or inorganic content. Based on these results, H. discoidea will likely produce new calcified segments with intact aragonite crystals under year 2100 pCO2 levels at high and low irradiance, while aragonite crystals of the sediment may produce thinner needle carbonate muds

    Listening to mental health crisis needs at scale: using Natural Language Processing to understand and evaluate a mental health crisis text messaging service

    Get PDF
    The current mental health crisis is a growing public health issue requiring a large-scale response that cannot be met with traditional services alone. Digital support tools are proliferating, yet most are not systematically evaluated, and we know little about their users and their needs. Shout is a free mental health text messaging service run by the charity Mental Health Innovations, which provides support for individuals in the UK experiencing mental or emotional distress and seeking help. Here we study a large data set of anonymised text message conversations and post-conversation surveys compiled through Shout. This data provides an opportunity to hear at scale from those experiencing distress; to better understand mental health needs for people not using traditional mental health services; and to evaluate the impact of a novel form of crisis support. We use natural language processing (NLP) to assess the adherence of volunteers to conversation techniques and formats, and to gain insight into demographic user groups and their behavioural expressions of distress. Our textual analyses achieve accurate classification of conversation stages (weighted accuracy = 88%), behaviours (1-hamming loss = 95%) and texter demographics (weighted accuracy = 96%), exemplifying how the application of NLP to frontline mental health data sets can aid with post-hoc analysis and evaluation of quality of service provision in digital mental health services

    Modeling the adiabatic connection in Hâ‚‚

    Get PDF
    Full configuration interaction (FCI) data are used to quantify the accuracy of approximate adiabatic connection (AC) forms in describing the ground state potential energy curve of H2, within spin-restricted density functional theory (DFT). For each internuclear separation R, accurate properties of the AC are determined from large basis set FCI calculations. The parameters in the approximate AC form are then determined so as to reproduce these FCI values exactly, yielding an exchange-correlation energy expressed entirely in terms of FCI-derived quantities. This is combined with other FCI-derived energy components to give the total electronic energy; comparison with the FCI energy quantifies the accuracy of the AC form. Initial calculations focus on a [1/1]-Padé-based form. The potential energy curve determined using the procedure is a notable improvement over those from existing DFT functionals. The accuracy near equilibrium is quantified by calculating the bond length and vibrational wave numbers; errors in the latter are below 0.5%. The molecule dissociates correctly, which can be traced to the use of virtual orbital eigenvalues in the slope in the noninteracting limit, capturing static correlation. At intermediate R, the potential energy curve exhibits an unphysical barrier, similar to that noted previously using the random phase approximation. Alternative forms of the AC are also considered, paying attention to size extensivity and the behavior in the strong-interaction limit; none provide an accurate potential energy curve for all R, although good accuracy can be achieved near equilibrium. The study demonstrates how data from correlated ab initio calculations can provide valuable information about AC forms and highlight areas where further theoretical progress is required

    Chemotherapy for advanced breast cancer: what influences oncologists' decision-making?

    Get PDF
    Chemotherapy is widely used in the management of patients with advanced breast cancer. However, a considerable proportion of patients experience toxic side effects without gaining benefit. This study aimed to elicit oncologists' views of the goals of chemotherapy for patients with advanced breast cancer and to elicit which factors are important in decisions to recommend chemotherapy to such patients. 30 oncologists underwent a semi-structured interview to examine their views of 5 goals of chemotherapy and of various disease, treatment and patient-related factors that might influence decisions to offer treatment. The clinicians also made decisions regarding treatment in relation to a hypothetical patient scenario under varying clinical conditions. Relief of symptoms and improvement of activity were rated as the most valuable and achievable goals of treatment. The patient's performance status, frailty and their wishes regarding treatment were the most important patient-related factors in determining decision-making. The most important disease/treatment-related factors were pace of the disease, previous poor response to chemotherapy, co-existing symptoms and concurrent medical conditions. The hypothetical scenario revealed that co-existing medical conditions, adverse previous response, increased age and depression would decrease the likelihood of recommending chemotherapy, whereas key symptoms (e.g. breathlessness) and the patient's goals would increase the likelihood. The findings suggest that British oncologists primarily aim to improve patients' physical function, although subjective factors, such as a patient's desire for anti-cancer treatment and their future goals, also influence decisions to offer treatment. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Quantum-mechanical calculation of Stark widths of Ne VII n=3, Δn=0\Delta n=0 transitions

    Full text link
    The Stark widths of the Ne VII 2s3s-2s3p singlet and triplet lines are calculated in the impact approximation using quantum-mechanical Convergent Close-Coupling and Coulomb-Born-Exchange approximations. It is shown that the contribution from inelastic collisions to the line widths exceeds the elastic width contribution by about an order of magnitude. Comparison with the line widths measured in a hot dense plasma of a gas-liner pinch indicates a significant difference which may be naturally explained by non-thermal Doppler effects from persistent implosion velocities or turbulence developed during the pinch implosion. Contributions to the line width from different partial waves and types of interactions are discussed as well.Comment: 8 pages, 3 figures; accepted by Phys. Rev.

    Safeguarding maternal and child health in South Africa by starting the Child Support Grant before birth: Design lessons from pregnancy support programmes in 27 countries

    Get PDF
    Background: Deprivation during pregnancy and the neonatal period increases maternal morbidity, reduces birth weight and impairs child development, with lifelong consequences. Many poor countries provide grants to mitigate the impact of poverty during pregnancy. South Africa (SA) offers a post-delivery Child Support Grant (CSG), which could encompass support during pregnancy, informed by lessons learnt from similar grants. Objectives: To review design and operational features of pregnancy support programmes, highlighting features that promote their effectiveness and efficiency, and implications thereof for SA. Methods: Systematic review of programmes providing cash or other support during pregnancy in low- and middle-income countries. Results: Thirty-two programmes were identified, across 27 countries. Programmes aimed to influence health service utilisation, but also longer-term health and social outcomes. Half included conditionalities around service utilisation. Multifaceted support, such as cash and vouchers, necessitated complex parallel administrative procedures. Five included design features to diminish perverse incentives. These and other complex features were often abandoned over time. Operational barriers and administrative costs were lowest in programmes with simplified procedures and that were integrated within child support. Conclusions: Pregnancy support in SA would be feasible and effective if integrated within existing social support programmes and operationally simple. This requires uncomplicated enrolment procedures (e.g. an antenatal card), cash-only support, and few or no conditionalities. To overcome political barriers to implementation, the design might initially need to include features that discourage pregnancy incentives. Support could incentivise service utilisation, without difficult-to-measure conditionalities. Beginning the CSG in pregnancy would be operationally simple and could substantially transform maternal and child health

    Plucking enhanced beneath ice sheet margins: evidence from the Grampian Mountains, Scotland

    Get PDF
    Concentrations of boulders are a common feature of landscapes modified by former mid-latitude ice sheets. In many cases, the origin of the boulders can be traced in the up-ice direction to a cliff only tens to hundreds of metres distant. The implication is that a pulse of plucking and short boulder transport occurred beneath thin ice at the end of the last glacial cycle. Here we use a case study in granite bedrock in the Dee Valley, Scotland, to constrain theory and explore the factors involved in such a late phase of plucking. Plucking is influenced by ice velocity, hydrology, effective ice pressure, the extent of subglacial cavities and bedrock characteristics. The balance between these factors favours block removal beneath thin ice near a glacier margin. At Ripe Hill in the Dee Valley, a mean exposure age of 14.2 ka on blocks supports the view that the boulder train formed at the end of ice sheet glaciation. The late pulse of plucking was further enhanced by ice flowing obliquely across vertical joints and by fluctuations in sub-marginal meltwater conditions. An implication of the study is that there is the potential for a wave of ice-marginal plucking to sweep across a landscape as an ice sheet retreats

    Improved contact tracing using network analysis and spatial-temporal proximity

    Get PDF
    PURPOSE: Contact tracing is a crucial tool in infection prevention and control (IPC), which aims to identify outbreaks and prevent onward transmission. What constitutes a contact is typically based on strict binary criteria (i.e., being at a location at the same time). Missing data, indirect contacts and background sources can however substantially alter contact-tracing investigations. Here, we present StEP, a Spatial-temporal Epidemiological Proximity model that accounts for imperfect data by introducing a network-based notion of contact based on spatial-temporal proximity derived from background flows of patient movement. METHODS & MATERIALS: We showcase StEP by analysing outbreaks of multidrug-resistant bacteria and COVID-19 within a large hospital Trust in London (UK).StEP utilises spatial-temporal patient trajectories and the background hospital movement flows to recover enhanced contact networks. Firstly, we study a well-characterised outbreak of carbapenemase-producing Enterobacteriaceae (CPE) involving 116 hospitalised patients where genetic sequencing is used to learn model parameters. Secondly, our trained model is deployed in an unsupervised manner on three unseen outbreaks involving 867 patients of related CPE-types. Thirdly, we test application to an altogether novel pathogen by analysing a hospital outbreak of COVID-19 among 90 hospital patients, and demonstrate the power of StEP when characterising newly emerging diseases, even when there is a lack of sequencing data. RESULTS: In addition to recovering core contact structures, StEP identifies missing contacts that link seemingly unconnected infection clusters, revealing a larger extent of transmission than conventional methods. Via genomic analyses we confirm that the additional contacts detected through StEP lead to improved alignment to the plasmid phylogeny (the major outbreak driving force). Hence the StEP contact network is most aligned to the transmission structure. CONCLUSION: By considering spatial-temporal information in a continuous manner, StEP tackles several challenges associated with traditional contact-tracing. StEP allows both direct and indirect contacts as possible routes of disease transmission and is tuneable to a pathogen's epidemiological characteristics. Such flexible use of heterogeneous data in uncertain situations can significantly enhance IPC

    Vortex Dynamics in Dissipative Systems

    Full text link
    We derive the exact equation of motion for a vortex in two- and three- dimensional non-relativistic systems governed by the Ginzburg-Landau equation with complex coefficients. The velocity is given in terms of local gradients of the magnitude and phase of the complex field and is exact also for arbitrarily small inter-vortex distances. The results for vortices in a superfluid or a superconductor are recovered.Comment: revtex, 5 pages, 1 encapsulated postscript figure (included), uses aps.sty, epsf.te

    Improving Predictions for Helium Emission Lines

    Get PDF
    We have combined the detailed He I recombination model of Smits with the collisional transitions of Sawey & Berrington in order to produce new accurate helium emissivities that include the effects of collisional excitation from both the 2 (3)S and 2 (1) S levels. We present a grid of emissivities for a range of temperature and densities along with analytical fits and error estimates. Fits accurate to within 1% are given for the emissivities of the brightest lines over a restricted range for estimates of primordial helium abundance. We characterize the analysis uncertainties associated with uncertainties in temperature, density, fitting functions, and input atomic data. We estimate that atomic data uncertainties alone may limit abundance estimates to an accuracy of 1.5%; systematic errors may be greater than this. This analysis uncertainty must be incorporated when attempting to make high accuracy estimates of the helium abundance. For example, in recent determinations of the primordial helium abundance, uncertainties in the input atomic data have been neglected.Comment: ApJ, accepte
    • …
    corecore