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Full configuration interaction �FCI� data are used to quantify the accuracy of approximate adiabatic
connection �AC� forms in describing the ground state potential energy curve of H2, within
spin-restricted density functional theory �DFT�. For each internuclear separation R, accurate
properties of the AC are determined from large basis set FCI calculations. The parameters in the
approximate AC form are then determined so as to reproduce these FCI values exactly, yielding an
exchange-correlation energy expressed entirely in terms of FCI-derived quantities. This is combined
with other FCI-derived energy components to give the total electronic energy; comparison with the
FCI energy quantifies the accuracy of the AC form. Initial calculations focus on a �1/1�-Padé-based
form. The potential energy curve determined using the procedure is a notable improvement over
those from existing DFT functionals. The accuracy near equilibrium is quantified by calculating the
bond length and vibrational wave numbers; errors in the latter are below 0.5%. The molecule
dissociates correctly, which can be traced to the use of virtual orbital eigenvalues in the slope in the
noninteracting limit, capturing static correlation. At intermediate R, the potential energy curve
exhibits an unphysical barrier, similar to that noted previously using the random phase
approximation. Alternative forms of the AC are also considered, paying attention to size extensivity
and the behavior in the strong-interaction limit; none provide an accurate potential energy curve for
all R, although good accuracy can be achieved near equilibrium. The study demonstrates how data
from correlated ab initio calculations can provide valuable information about AC forms and
highlight areas where further theoretical progress is required. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2747248�

I. INTRODUCTION

The success of Kohn-Sham density functional theory1,2

�DFT� relies on the accurate representation of the exchange-
correlation energy EXC. Significant insight into this quantity
is obtained from the adiabatic connection �AC�,3–10 which
considers a series of N-electron systems with Hamiltonians

Ĥ� = T̂ + �V̂ee + �
i

v��ri� , �1�

where T̂ is the electronic kinetic energy operator and � is a
coupling strength parameter that scales the electron-electron

interaction, V̂ee=�i�j1/rij. The final term is the external po-
tential, which is varied so as to keep the density fixed at its
physical value.5 The AC smoothly connects the Kohn-Sham
noninteracting system ��=0� to the interacting physical sys-
tem ��=1� and, through the Hellmann-Feynman theorem,
provides an exact expression for the exchange-correlation
energy,

EXC = �
0

1

d�W�, �2�

where

W� = �����
i�j

1

rij
���	 − J . �3�

Here, �� is the ground state wave function of the system

with Hamiltonian Ĥ�, and J is the Coulomb energy,

J =
1

2
� � dr1dr2

��r1���r2�
r12

, �4�

where ��r� is the electron density. When �=0, the wave
function is the noninteracting Kohn-Sham single determinant
�0, so

W0 = ��0��
i�j

1

rij
��0	 − J = EX, �5�

where EX is the exact orbital exchange energy, defined as in
Hartree-Fock theory but evaluated using Kohn-Sham orbit-
als. When �=1, the wave function is the exact wave function
of the interacting physical system, �1, so

W1 = ��1��
i�j

1

rij
��1	 − J = Vee − J , �6�

which is the difference between the total electron-electron
repulsion energy Vee of the interacting physical system and
the Coulomb energy. It follows that the correlation kinetic
energy, defined by TC=EXC− �Vee−J�, is given by
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TC = EXC − W1. �7�

As illustrated in Fig. 1, EXC and TC have a simple geometri-
cal interpretation in terms of the AC. The exact slope of W�

at �=0 is twice the second-order correlation energy from
Görling-Levy density functional perturbation theory11,12

�GL2�,


 �W�

��



�=0
= 2EC

GL2 = −
1

2 �
ij��

���i��j� − ��j��i��2

�� + �� − �i − � j

− 2�
i�

��i�vX − vX
NL���	2

�� − �i
. �8�

Here, the first term is twice the conventional second-order
Møller-Plesset energy expression, involving two-electron in-
tegrals of occupied �i , j� and virtual �� ,�� Kohn-Sham orbit-
als and their associated eigenvalues �. The second term in-
volves the difference between the multiplicative exchange
potential vX and the nonmultiplicative �nonlocal, NL� ex-
change, vX

NL.
There have been a number of attempts to develop

exchange-correlation functionals by explicitly approximating
W� and evaluating the energy using Eq. �2�. Examples in-
clude the half-and-half functional of Becke13 �the precursor
of the Becke-3-Lee-Yang-Parr functional14–17 �B3LYP��; the
�1/1�-Padé-based form of Ernzerhof;18 the two-legged repre-
sentation of Burke et al.;19 and the interaction strength inter-
polation of Seidl et al.20 Mori-Sánchez, Cohen, and Yang21

�MCY� recently proposed two functionals based on the same
form considered by Ernzerhof,18

W�
MCY = a +

b�

1 + c�
, �9�

but with alternative definitions of the three parameters.
The quantities a and b in Eq. �9� define the value and

slope, respectively, of W�
MCY at �=0. To satisfy Eq. �5�,

Mori-Sánchez et al. defined the parameter a to be the ex-
change energy EX. In order to avoid the computational ex-
pense of the GL2 slope evaluation, they defined b as a modi-
fied Tao-Perdew-Staroverov-Scuseria22 �TPSS� slope, with
an additional scaling factor of 4.0 to optimize thermochemi-

cal performance. The parameter c was chosen such that
W�

MCY equalled the BLYP �Ref. 16 and 23� value at �=0.63,
again to optimize performance. This functional was denoted
as MCY1. A second functional �denoted as MCY2� involving
an additional scaling factor was introduced to improve
atomic energies. A key feature of the MCY functionals is that
they are one-electron self-interaction-free, meaning that the
exchange-correlation energy exactly cancels the Coulomb
energy for any one-electron density; this follows because, as
defined, b=0 for a one-electron system and so the exchange-
correlation energy reduces to the exchange energy, as re-
quired. They are not, however, many electron
self-interaction-free.24,25 The performance of the functionals
is encouraging, notably providing a simultaneously good de-
scription of thermochemistry and kinetics.21

The quality of the MCY functionals is governed by the
mathematical form of Eq. �9� and the procedure used to de-
termine the three parameters. An obvious �but necessary� de-
ficiency is that although the leading parameter was deter-
mined so as to reproduce a known property of the exact AC,
the other two were not. The first aim of the present study is
to use correlated ab initio calculations to investigate the per-
formance of the W� form in Eq. �9� when all three param-
eters are determined so as to reproduce accurate properties of
the AC—this will establish how well the exact AC can be
represented using this form. As the test, we shall consider the
singlet ground state potential energy curve of the H2 mol-
ecule, which is the famous and challenging example of static
electron correlation. The small size of this system allows
essentially exact ab initio calculations to be performed and
the two-electron nature affords several welcome simplifica-
tions. The work is particularly relevant in light of the recent
study by Fuchs et al.,26 who considered H2 dissociation us-
ing the random phase approximation �RPA�;3,5 see Ref. 26
for a detailed discussion of H2 dissociation in DFT. The sec-
ond aim of the study is to extend the analysis to other AC
forms, paying attention to size extensivity and the behavior
in the strong-interaction limit.

We commence in Sec. II by describing how large basis
set full configuration interaction �FCI� calculations can be
used to determine accurate properties of the AC. In Sec. III,
the three parameters in the AC form in Eq. �9� are deter-
mined so as to reproduce these FCI values exactly, yielding
an exchange-correlation energy expressed entirely in terms
of FCI-derived quantities. This is then combined with other
FCI-derived energy components to give the total electronic
energy. The H2 potential energy curve and related properties
determined in this manner are compared with conventional
DFT results and FCI reference values, allowing the accuracy
of the AC form to be quantified. The analysis is extended to
other AC forms in Sec. IV. Conclusions are presented in Sec.
V.

II. COMPUTATIONAL DETAILS

All calculations in this study use the CADPAC program,27

with the extensive aug-cc-pV6Z orbital basis set,28 omitting
g and h functions for technical reasons. The H2 molecule is
treated in its singlet ground state using the appropriate spin-

FIG. 1. Schematic representation of the adiabatic connection. EXC and −TC

are given by the integrals, as indicated.
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restricted formalism throughout—no unrestricted calcula-
tions are performed. The FCI calculations provide exact re-
sults within the extensive basis set; the dissociation energy
agrees with that of Kołos and Wolniewicz29 to within 0.1%.

Our first task is to calculate accurate properties of the
AC. In principle, an accurate AC curve can be determined by
evaluating Eq. �3� using wave functions from FCI calcula-
tions, and although this is nontrivial for arbitrary �, it is
straightforward when � is 0 or 1. For �=0, evaluation of Eq.
�5� using FCI data gives the exchange energy, determined
using the Kohn-Sham orbitals associated with the FCI den-
sity. For a two-electron system, the exchange energy is mi-
nus one-half of the Coulomb energy, and so

W0
FCI = −

1

2
JFCI, �10�

where JFCI is the Coulomb energy in Eq. �4�, evaluated using
the FCI density. For �=1, evaluation of Eq. �6� using the FCI
data gives

W1
FCI = Vee

FCI − JFCI, �11�

where Vee
FCI is the FCI electron-electron repulsion energy, ob-

tained by subtracting the nuclear-nuclear repulsion and one-
electron energies �determined using the FCI density matrix�
from the FCI total electronic energy. Eqs. �10� and �11� rep-
resent exact values of the AC, within the basis set, which can
easily be determined from a FCI calculation.

The slope at �=0 is twice the GL2 energy, given in Eq.
�8�, evaluated using the Kohn-Sham orbitals and eigenvalues
associated with the FCI density. For this two-electron sys-
tem, vX in the second term of Eq. �8� is minus one-half of the
Coulomb potential, since the potential is the functional de-
rivative of the corresponding energy. Given that there is only
one occupied orbital �1, it follows that

��1�vX���	 = ��1�vX
NL���	 , �12�

for all virtual orbitals ��. Hence the latter term in Eq. �8� is
identically zero and


 �W�
FCI

��



�=0
= −

1

2 �
ij��

���i��j� − ��j��i��2

�� + �� − �i − � j
. �13�

Evaluation of this expression requires the Kohn-Sham orbit-
als and eigenvalues associated with the FCI density and the
accuracy of these quantities will depend on the method used
to obtain them. We use the Wu-Yang30 �WY� implementation
of the constrained search formulation,31,32 which minimizes
the noninteracting kinetic energy subject to the constraint
that the FCI density is recovered. A well-balanced descrip-
tion of the orbitals and potential is known to be
important33,34 in the closely related Yang-Wu optimized ef-
fective potential scheme35 and so we use the same �trun-
cated� aug-cc-pV6Z basis set28 for the expansion of both the
orbitals and potential. We use a Fermi-Amaldi36 reference
potential, which provides essentially identical results to those
obtained using a Slater reference potential.37 We use a cutoff
of 1	10−6 in the truncated singular value decomposition,
which provides essentially identical results to those obtained
using a cutoff of 1	10−8. Further reduction in the cutoff is

numerically undesirable. By construction, the density from
the Kohn-Sham occupied orbital should equal the FCI den-
sity and so the accuracy of the calculations can be judged by
comparing the Coulomb energies �Eq. �4�� from the two den-
sities. For the range of H2 internuclear separations �R� con-
sidered �0.7 bohr
R
10 bohrs�, the energies from the two
densities differ by a maximum of 5	10−6 hartree �7
	10−4% �.

Schipper et al.38 have demonstrated that the exchange-
correlation potential that exactly corresponds to a finite
Gaussian basis set density can exhibit unphysical, oscillatory
structure. The exchange-correlation potentials in our WY cal-
culations do exhibit minor undulations when R is large. In
order to obtain a smooth, more physically sensible potential,
we have performed additional calculations using the proce-
dure of Heaton-Burgess et al.,34 which introduces a smooth-
ing norm into the minimization. The potentials do become
very smooth but, importantly, the potential energy curves
�see later� are essentially indistinguishable from those ob-
tained without the smoothing norm. The FCI density is less
well reproduced, however, because the procedure limits the
extent to which the solution point ��=�FCI� can be reached.

For a two-electron system, the exchange-correlation po-
tential that yields the finite basis FCI density can be deter-
mined exactly from a direct inversion of the Kohn-Sham
equation;39 see Ref. 40 for a related study on the H2 mol-
ecule. We have performed a direct inversion and—consistent
with Schipper et al.38—find that the potential is oscillatory in
the vicinity of the nuclei. A third way to determine orbitals
and eigenvalues is therefore to solve the finite basis set
Kohn-Sham problem with this potential. Again, the potential
energy curves are virtually indistinguishable from those
above, although the FCI density is reproduced less well, this
time due to the use of a finite basis set. Throughout this
study, Eq. �13� is therefore evaluated using the first of the
three described procedures.

Evaluation of Eqs. �10�, �11�, and �13� provides accurate
AC data for H2. In Secs. III and IV, these data will be used to
determine the parameters in approximate AC forms such that
these FCI values, or some subset of them, are reproduced
exactly. The associated exchange-correlation energies will
then be determined entirely in terms of FCI-derived quanti-
ties and so any error in the exchange-correlation energy can
be attributed to the failure of the approximate AC form to
reproduce the exact AC. In practical calculations, it is more
convenient to deal with total electronic energies and their
related properties, rather than exchange-correlation energies.
The nuclear-electron and Coulomb components of the total
energy are always explicit functionals of the density, so can
be calculated exactly, within the basis set, by evaluating
them using the FCI density. For two-electron systems, the
occupied Kohn-Sham orbital is the square root of one-half of
the electron density, and so the noninteracting kinetic energy,
which is generally a functional of the orbitals, also becomes
an explicit functional of the density. Specifically, it is given
by the von Weizsäcker expression,41
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Ts = TW =
1

8
� dr

����r��2

��r�
, �14�

and so this component can also be evaluated exactly from the
FCI density. The only other component is the nuclear-nuclear
repulsion, which is trivial to determine. We therefore define
our total DFT electronic energy for H2 as

E = TW
FCI + Ene

FCI + JFCI + Enn + EXC, �15�

where TW
FCI and Ene

FCI are the von Weizsäcker and nuclear-
electron energies, respectively, evaluated using the FCI den-
sity. The first four terms are exact and the error in the final
term arises entirely from the approximate AC form. Com-
parison of energies from Eq. �15� with those from FCI will
therefore allow the accuracy of the AC form to be quantified.

III. APPLICATION TO THE W�
MCY FORM

As a first application, we consider the AC form in Eq.
�9�. We introduce the notation

W�
AC1 = a +

b�

1 + c�
�16�

for which the exchange-correlation energy in Eq. �15� is21

EXC
AC1 = a +

b

c
�1 −

loge�1 + c�
c

� . �17�

We define the parameters a, b, and c, by requiring that the
value and slope of W�

AC1 at �=0, together with the value at
�=1, equal the FCI values of Sec. II,

W0
AC1 = a = W0

FCI, �18�


 �W�
AC1

��



�=0
= b = 
 �W�

FCI

��



�=0
, �19�

and

W1
AC1 = a +

b

1 + c
= W1

FCI. �20�

From Eqs. �10�, �11�, and �13�, it follows that

a = −
1

2
JFCI, �21�

b = −
1

2 �
ij��

���i��j� − ��j��i��2

�� + �� − �i − � j
, �22�

using Kohn-Sham quantities from the WY calculation, and

c =
b

Vee
FCI − JFCI − a

− 1. �23�

For each H2 internuclear separation, an FCI calculation was
performed and the quantities a, b, and c in Eqs. �21�–�23�,
were determined. These were used to evaluate the exchange-
correlation energy using Eq. �17�, which was then combined
with the other FCI-derived components in Eq. �15�, to deter-
mine the total electronic energy. Results from this procedure
are denoted as AC1.

We first consider potential energy curves of H2 deter-
mined using standard methods, reiterating that all calcula-
tions in this study use the appropriate spin-restricted formal-
ism. Figure 2�a� compares self-consistent Hartree-Fock �HF�
and B3LYP curves with the FCI reference curve. HF is very
poor, reflecting the 50% unphysical ionic contribution
�H+

¯H−� to the wave function at dissociation. The B3LYP
curve is an improvement, but significant error remains. Also
shown is the self-consistent MCY1 curve, which is similar to
the MCY2 curve �not shown�. MCY1 provides similar per-
formance to B3LYP while removing the one-electron self-
interaction error.

Figure 2�b� compares the AC1 potential energy curve
with the FCI reference curve. It is a significant improvement
over those of Fig. 2�a�. We stress that the improvement is not
simply a consequence of using improved Kohn-Sham orbit-
als; we have performed MCY1 culations using the WY or-
bitals and the shape of the potential energy curve barely
changes from the MCY1 curve in Fig. 2�a�, other than by an
upward shift due to the non variational nature of such calcu-
lations.

AC1 provides a good description of the potential energy
curve in the region of the minimum. MCY1 and B3LYP are
also accurate in this region, while HF is poor. To quantify the
accuracy, Table I presents optimized bond lengths Re for the
methods, comparing with the FCI value, which agrees with
experiment to the precision quoted. All three DFT methods
give bond lengths to within 0.001 bohr of FCI; the bond

FIG. 2. Potential energy curve of H2 determined using FCI, compared with
those from �a� HF, MCY1, and B3LYP; and �b� AC1.
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length is notably underestimated with HF. The potential en-
ergy curves have also been used to determine vibrational
energy levels, using the LEVEL 7.5 code of Le Roy.44 The
potential energy curves used as input consisted of points in
the range of 0.7 bohr
R
3.5 bohrs, with a spacing of
0.01 bohr; we have confirmed that the quoted results are con-
verged with respect to these quantities. Convergence of the
calculated levels was set to 1	10−2 cm−1 and ten-point
piecewise polynomial interpolation was used. Zero-point,
fundamental, and overtone wave numbers �J=0� are pre-
sented in Table I, comparing with the FCI values, which
agree with experiment to within 1 cm−1. AC1 provides the
best agreement with FCI, with errors of 5, 14, and 33 cm−1,
respectively for zero point, fundamental, and overtone; the
corresponding percentage errors are 0.2%, 0.3%, and 0.4%.
The next best results are obtained with B3LYP, where the
errors are 6, 26, and 75 cm−1. MCY1 errors are 11, 35, and
94 cm−1. All three functionals therefore provide a good qual-
ity zero-point wave number, but the differences between the
methods become more pronounced for the higher levels, with
MCY1 and �to a lesser extent� B3LYP degrading. The HF
errors are significantly larger.

Figure 2�b� further demonstrates that at large R, AC1
also provides results in excellent agreement with FCI—static
correlation is recovered. In fact, the dissociation limit is ob-
tained exactly because as R→�, the quantity b→−�, due to
the eigenvalue degeneracy in the denominator of Eq. �22�. It
follows that the exchange-correlation energy in Eq. �17� ap-
proaches the value W1

AC1, which, by construction, equals
W1

FCI in Eq. �11�. Given that there is no electron-electron
repulsion, this is just the negative of the FCI coulomb en-
ergy, and so the exchange-correlation energy exactly cancels
the Coulomb one and the total energy in Eq. �15� reduces to
the sum of the one-electron contributions, as required. This is
also evident from a consideration of the derivative of Eq.
�16�,

�W�
AC1

��
=

b

�1 + c��2 , �24�

as R→�, which exhibits the correct behavior, as described
in Ref. 26. When �=0, the gradient equals b, which is minus
infinity in the limit. For any nonzero �, however, the gradient
is zero due to the quadratic divergence in the denominator.
As R→�, the quantity W�

AC1 therefore drops from its value
of W0

AC1=a with an infinite slope, acquiring the constant
value W1

AC1=2a for all nonzero �, thereby trivially integrat-
ing to an energy of W1

AC1. It follows that TC is exactly zero
�recall Fig. 1�, which is appropriate in this case as it com-

prises two isolated one-electron systems. The reader is re-
ferred to Fig. 2 of Ref. 26 and the discussion of Fig. 3,
below. It is worth noting that this lack of � dependence in
W�

AC1 �i.e., TC=0� will occur whenever b→−�, for example,
in the dissociation of a general homonuclear diatomic mol-
ecule. In cases with many electron fragments, it will be in-

TABLE I. Bond lengths �Re� in bohr, and zero-point �ZP�, fundamental �v=0→v=1�, and first overtone �v
=0→v=2� vibrational wave numbers in cm−1, compared to experimental values.

HF B3LYP MCY1 AC1 FCI Expt.

Re 1.386 1.402 1.401 1.400 1.401 1.401a

ZP 2274 2186 2191 2185 2180 2179b

v=0→v=1 4373 4188 4197 4176 4162 4161b

v=0→v=2 8546 8163 8182 8121 8088 8087b

aReference 42.
bDetermined using the Dunham coefficients in Ref. 42, with the Kaiser correction �Ref. 43�.

FIG. 3. Comparison of W� from AC1 and MCY1, evaluated at internuclear
separations of �a� 1.4 bohr �equilibrium�, �b� 5 bohrs; and �c� 10 bohrs.
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correct to have TC=0. Mori-Sánchez et al.21 cite the related
example of the uniform electron gas.

Next, consider intermediate regions in Fig. 2�b�. The
AC1 curve resembles that obtained by Fuchs et al.,26 using
the RPA. There is an unphysical barrier, which is the first
significant discrepancy compared to FCI. We reiterate that
this feature is unaffected by smoothing the potential in the
WY procedure or the use of the direct inversion alternative.
This does not imply, however, that it is insensitive to the
choice of orbitals and eigenvalues in Eq. �22�. Replacing the
FCI-based WY quantities with those from the
Perdew-Burke-Ernzerhof45 functional more than doubles the
size of the barrier; using Hartree-Fock quantities causes a
further significant increase. See Ref. 46 for a discussion of
the orbital dependence of this feature in the RPA. We inter-
pret the barrier in Fig. 2�b� as a failure of Eq. �16�. Consis-
tent with this, we note that Fuchs et al.26 used a similar form
to represent their near-exact AC near equilibrium, but had to
introduce additional flexibility into the form at intermediate
R.

Table II quantifies the AC1 error in Fig. 2�b�. Rather
than presenting total electronic energies, only the exchange-
correlation component is presented; the error is the same.
The values may provide a useful reference for future studies
of exchange-correlation in H2. The first column lists exact
values determined from FCI,

EXC
FCI = EFCI − TW

FCI − Ene
FCI − JFCI − Enn, �25�

where EFCI is the FCI total electronic energy. The second
column lists AC1 energies and the third column lists the
associated percentage errors. The error at the equilibrium
geometry �1.4 bohr� is 10−4 hartree, which represents the
AC1 error in the dissociation energy. The maximum discrep-
ancy occurs at 5 bohrs, where the energy difference is 1.35
	10−2 hartree �2.3%�. This error is about one-half of that
obtained with the RPA in the study of Fuchs et al.26

It is instructive to examine the shape of W�
AC1 in the

three cases. Figure 3 presents W�
AC1 plots at �a� R=1.4 bohr,

�b� 5.0 bohrs, and �c� 10.0 bohrs. The self-consistent MCY1
curves are presented for comparison. Both methods define
W0 to equal the exchange energy, but the values are different
in practice because the MCY1 calculations use the self-

consistent MCY1 exchange energy, whereas AC1 uses Eq.
�21�. At the equilibrium bond length �R=1.4 bohr�, the two
curves have a different shape, but the integrals, which deter-
mine EXC through Eq. �2�, are similar; the potential energy
curves are therefore similar near equilibrium. The AC1 curve
in Fig. 3�a� closely resembles the “exact” curve of Fuchs
et al.26 As R increases �Figs. 3�b� and 3�c��, the MCY1 inte-
gral becomes significantly less negative than that of AC1 and
this is again reflected in the potential energy curves. At R
=10 bohrs, the AC1 curve is almost flat; it will become com-
pletely flat, as discussed above, as R→�. Interestingly, for
this internuclear separation the MCY1 and AC1 curves have
very similar values at �=1 and so the failure of MCY1 can
be attributed almost entirely to the incorrect slope at �=0.
The modified TPSS slope used in MCY1 does not diverge;
the slope actually becomes less negative with increasing R.
The GL2 slope used in AC1 does diverge, due to its depen-
dence on the virtual orbital eigenvalues—static correlation is
recovered. As with the potential energy curve, we have con-
firmed that the MCY1 curves in Fig. 3 do not improve when
they are evaluated using the WY orbitals.

Figure 4 presents �2W�
AC1/��2, plotted as a function of R,

for a range of � values. The curve for �=0 is not presented
due to the divergence at large R. For all the � values shown,
the curvature is small near equilibrium, increases to a maxi-
mum for intermediate R, then decreases again near dissocia-
tion. The observation that the associated potential energy
curve is accurate at equilibrium and dissociation, but rela-
tively poor in the intermediate regions, indicates that the
form in Eq. �16� works well when the curvature is limited,
but less well when it is higher. Inclusion of higher order
terms in the expansion appears desirable, but would require
additional input data. The high curvature of W� and the as-
sociated failure of Eq. �16� at intermediate R may reflect the
fact that the nature of the exact wave function changes very
rapidly in this region of the potential energy curve,47 as evi-
denced by rapid changes in the occupation numbers of the �g

and �u natural orbitals.

IV. APPLICATION TO OTHER W� FORMS

Calculations using the exchange-correlation energy in
Eq. �17�, with parameters a, b, and c defined as in Sec. III or

TABLE II. Exchange-correlation energies, in hartrees, calculated using FCI
and AC1, as functions of internuclear separation R, in bohrs. Also presented
are the AC1 percentage errors.

R EXC
FCI EXC

AC1 % Error

1.0 −0.7857 −0.7857 0.0
1.4 −0.7024 −0.7023 0.0
2.0 −0.6174 −0.6169 0.1
3.0 −0.5543 −0.5510 0.6
4.0 −0.5642 −0.5543 1.8
5.0 −0.5941 −0.5805 2.3
6.0 −0.6118 −0.6001 1.9
7.0 −0.6196 −0.6115 1.3
8.0 −0.6228 −0.6178 0.8
9.0 −0.6241 −0.6212 0.5

10.0 −0.6246 −0.6230 0.3

FIG. 4. �2W�
AC1/��2, as a function of R for various values of �.
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Ref. 21, are not in general size extensive.48,49 The energy of
a system composed of two-noninteracting closed-shell frag-
ments A and B does not equal the sum of the energies of the
two fragments when A and B are different, although it does
when they are the same. We complete this study by consid-
ering polynomial AC forms, which provide size-extensive
models. We continue to define W� in terms of parameters a,
b, and c, but their definitions may differ from those in Sec.
III. We first consider the two forms

W�
AC2 = a + b� ,

�26�
W�

AC3 = a + b� + c�2,

for which the exchange-correlation energies are

EXC
AC2 = a +

b

2
,

�27�

EXC
AC3 = a +

b

2
+

c

3
.

For AC2, we can require that the value and slope of W�
AC2 at

�=0 equal the FCI values of Sec. II,

W0
AC2 = a = W0

FCI, �28�


 �W�
AC2

��



�=0
= b = 
 �W�

FCI

��



�=0
�29�

and so a and b are evaluated using Eqs. �21� and �22�. The
potential energy curve determined in this manner is denoted
as AC2 in Fig. 5�a�. It is in poor agreement with FCI near
equilibrium, diverging as R increases, due to the divergence
of b. In light of the half-and-half �H&H� work of Becke,13

who also used the AC2 linear interpolation, we can alterna-
tively require that the values of W�

AC2 equal the FCI values at
�=0 and �=1; this can be regarded as an exact representa-
tion of the half-and-half functional. In this case, Eq. �29� is
replaced by

W1
AC2 = a + b = W1

FCI, �30�

and so from Eq. �11�,

b = Vee
FCI − JFCI − a . �31�

The curve determined in this manner is denoted as
AC2�H&H� in Fig. 5�b�. It is again in poor agreement with
FCI near equilibrium but there is no divergence at large R, as
the GL2 energy is not used.

AC3 contains three parameters and so, as in Sec. III, we
require that the value and slope of W�

AC3 at �=0, together
with the value at �=1, equal the FCI values. It follows that a
and b are evaluated using Eqs. �21� and �22� while c is de-
termined from

W1
AC3 = a + b + c = W1

FCI, �32�

and so from Eq. �11�,

c = Vee
FCI − JFCI − a − b , �33�

The potential energy curve determined in this manner is de-
noted as AC3 in Fig. 5�c�. The agreement with FCI near
equilibrium is now much improved. The minimum energy is
at 1.402 bohr and the zero-point, fundamental, and overtone
vibrational wave numbers are underestimated by just 4, 9,
and 20 cm−1, which are the smallest errors obtained in this
study. The curve again diverges with increasing R, albeit
more slowly than with AC2. The inclusion of higher order
terms in � would again appear desirable.

The forms in Eq. �26� give energies that are size exten-
sive and one-electron self-interaction-free �when b and c are
defined as above and a is evaluated as the exchange energy�;
however, they do not scale to a constant in the strong-
interaction ��→�� limit50 when b and c are nonzero. This
leads us to consider the alternative forms

FIG. 5. Potential energy curve of H2 determined using FCI, compared with
those from size-extensive models. See text for details.
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W�
AC4 = a + b� �

1 + �
� ,

�34�

W�
AC5 = a + b� �

1 + �
� + c� �

1 + �
�2

,

which do scale to a constant when b and c are finite; the
corresponding energies are

EXC
AC4 = a + b�1 − loge�2�� ,

�35�
EXC

AC5 = a + b�1 − loge�2�� + c�3/2 − 2 loge�2�� .

Using exactly the same approach as for AC2 and AC3 �but
with amended definitions of b and c where appropriate�, we
have determined potential energy curves using the AC forms
in Eq. �34�. The results are denoted as AC4, AC4�H&H�, and
AC5 and are presented in Figs. 5�a�–5�c�, respectively. Com-
pared to the AC2, AC2�H&H�, and AC3 curves, the behavior
at large R is improved; the AC5 curvature is higher than that
of AC3, leading to an overestimation in the vibrational wave
numbers.

V. CONCLUSION

We have used FCI data to quantify the accuracy of ap-
proximate AC forms in describing the ground state potential
energy curve of H2 within spin-restricted DFT, which is the
famous and challenging example of static electron correla-
tion. The key idea is to calculate accurate properties of the
AC using FCI-derived data and then determine the param-
eters in approximate AC forms so as to reproduce these val-
ues exactly. The FCI density is also used to calculate the
non-exchange-correlation components of the total electronic
energy, allowing the accuracy of the various AC forms to be
quantified.

Initially, we focused on the AC in Eq. �16�, which has
been considered previously by Ernzerhof18 and Mori-
Sánchez et al.21 A particularly attractive feature of this form
is that an appropriate choice of b can easily eliminate one-
electron self-interaction.21 The potential energy curve deter-
mined using our approach is a significant improvement over
those from Hartree-Fock and existing DFT functionals. The
accuracy near equilibrium has been quantified by evaluating
the bond length and vibrational wave numbers; errors in the
latter are below 0.5%. The molecule dissociates correctly,
which can be traced to the use of the GL2 slope. As in
Refs. 26, 51, and 52, the present study therefore highlights
the importance of virtual orbitals and eigenvalues for captur-
ing static electron correlation effects. At intermediate R, the
potential energy curve exhibits an unphysical barrier, which
resembles that observed in Ref. 26 using the random phase
approximation, but the magnitude in the present study is
about half the size. Analysis of the curvature of the AC in-
dicates that Eq. �16� works well when there is limited curva-
ture, but less well when it is higher. The high curvature and
failure of Eq. �16� at intermediate R may reflect the rapidly
changing nature of the exact wave function in this region of
the potential energy curve.

We have subsequently considered AC representations
that lead to size-extensive models. Neither a straightforward
linear nor quadratic polynomial can provide an accurate po-
tential energy curve for all R, although the quadratic form is
accurate near equilibrium. We have also considered two al-
ternative forms that can scale correctly to a constant in the
strong-interaction limit, which lead to improvements at large
R.

Notwithstanding the high computational cost, the study
demonstrates how data from correlated ab initio calculations
can provide valuable information about AC forms and high-
light areas where further theoretical progress is required,
most notably in the description of the slope in the noninter-
acting limit.
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