63 research outputs found

    Assessing intraspecific trait variability during seedling establishment to improve restoration of tropical dry forests

    Get PDF
    Forest restoration is an effective tool to mitigate climate change, but its implementation in highly diverse and threatened tropical dry forests (TDFs) is particularly challenging due to the hostile environment. Intraspecific trait variability (ITV) in response to these constraints may be very informative for predicting the potential for species acclimation and therefore for improving trait-based species screenings that best match each particular scenario of forest restoration. We analyzed ITV during seedling establishment of three widely distributed and ecologically contrasting TDF species in a greenhouse multifactorial experiment crossing levels of resource availability (nutrients and water) and herbivory to assess the capacity of ITV to discern strategies of seedling establishment and to predict species' growth rates and acclimation potential. The three species studied had contrasting responses to the experimental treatments, suggesting different strategies of seedling establishment. The species with the most plastic pattern of growth performed the best, especially due to its ability to modulate the trade-off of root-to-shoot allocation of biomass depending on nutrient availability. Almost 50% of the variation in the root mass ratio was within species, half of which was a direct response of the treatments, indicating a strong acclimation potential. Individual-level trait measurements, however, were poor predictors of seedling growth rates. ITV, particularly the ability to adapt the pattern of biomass allocation, can be critical during seedling establishment. We propose incorporating information about ITV and the ability of species to modulate their phenotypic expression to cope with environmental variability into programs of forest restoration. Easily implemented and standardized greenhouse experiments are an inexpensive way to obtain high-quality data on the plasticity of forest species, which can be very valuable for predicting the potential of species acclimation and thus improving the selection of species that better match each particular scenario of restoration

    Autoconceito, adaptação escolar e exaustão emocional em alunos que fazem o ensino médio online

    Get PDF
    The aim of the research is to describe the behavior of self-concept, school adjustment and emotional exhaustion in a sample of online high school students in Mexico, as well as to identify gender differences, analyze their relationships and generate a predictive model. It is a study with a quantitative, observational approach, and a predictive cross-sectional design. Five hundred and seventy-eight students from the 32 states of Mexico participated. A sociodemographic questionnaire, the AF5 Self-concept scale, the Brief School Adjustment Scale and the Emotional Exhaustion Scale were used. The findings show that the emotional, social and physical self-concept present the lowest scores. Men obtained higher scores than women in all dimensions of self-concept, mainly in the emotional factor. All the participants showed adequate levels of school adjustment, both in total and in all its factors. In emotional exhaustion, women showed slightly higher levels than men. The association between self-concept and school adjustment was positive, while the relationship of both with emotional exhaustion was negative. It is suggested to delve into the study variables and incorporate the evolutionary factor of self-concept into the analysis, beyond the educational context.El objetivo del trabajo es describir el comportamiento del autoconcepto, ajuste escolar y cansancio escolar en una muestra de estudiantes que realizan estudios de bachillerato en línea en México; identificar diferencias en función del sexo, analizar sus relaciones y generar un modelo predictivo. Es un trabajo cuantitativo, de tipo observacional y diseño transversal predictivo. Participan 578 estudiantes de los 32 estados de la república mexicana. Se utilizó un cuestionario sociodemográfico, la escala de Autoconcepto AF5, la Escala Breve de Ajuste Escolar y la de Cansancio Emocional. Los hallazgos muestran que el autoconcepto emocional, social y físico presentan los más bajos puntajes. Los hombres logran puntuaciones más altas que las mujeres en todas las dimensiones del autoconcepto, mayormente en la emocional. El total de los participantes mostraron niveles adecuados de ajuste escolar, tanto en el total como en todos sus factores. En el cansancio emocional, las mujeres manifestaron niveles ligeramente superiores que los hombres. La asociación entre el autoconcepto y el ajuste escolar fue de tipo positiva; mientras que la relación de ambas con el cansancio emocional fue de tipo negativa. Se sugiere profundizar en las variables de estudio e incorporar en el análisis el factor evolutivo del autoconcepto, más allá del contexto educativo.O objetivo do trabalho é descrever o comportamento de autoconceito, adaptação escolar e exaustão escolar em uma amostra de estudantes que realizaram o ensino médio online no México, identificar diferenças em função do sexo, analisar suas relações e gerar um modelo preditivo. É um trabalho quantitativo, do tipo observacional e com delineamento transversal preditivo. Participam 578 estudantes dos 32 estados da República Mexicana. Foram utilizados um questionário sociodemográfico, a Escala de Autoconceito AF5, a Escala Breve de Ajustamento Escolar e a de Exaustão Emocional. Os achados mostram que o autoconceito emocional, social e físico apresentam as pontuações mais baixas. Os homens obtêm pontuações mais altas do que as mulheres em todas as dimensões do autoconceito, principalmente no emocional. Todos os participantes apresentaram níveis adequados de adaptação escolar, tanto no total quanto em todos os seus fatores. Na exaustão emocional, as mulheres apresentaram níveis ligeiramente superiores aos dos homens. A associação entre autoconceito e adaptação escolar foi do tipo positivo, enquanto a relação de ambos com a exaustão emocional foi de tipo negativo. Sugere-se aprofundar as variáveis do estudo e incorporar na análise o fator evolutivo do autoconceito, para além do contexto educacional

    Competencia autopercibida docente y enfoques de enseñanza en educación primaria

    Get PDF
    La presente investigación tuvo como propósito analizar la relación entre los factores de la competencia autopercibida docente y los enfoques de enseñanza en el profesorado de educación primaria. La muestra fue de tipo incidental bajo el enfoque cuantitativo, con un diseño no experimental, transversal y de alcance relacional. La muestra estuvo conformada por 158 docentes de un municipio del sur del estado de Sonora. Se aplicó la Escala de Evaluación de la Competencia Autopercibida del Docente en Educación Primaria [ECAD-EP] y el Cuestionario Enfoques de Enseñanza [CEE]. Se utilizó SPSS Versión 25 para el análisis de los datos. Como hallazgo principal se destaca que cuanto mayor sea el enfoque centrado en el alumno, mayor será la competencia autopercibida docente. Se concluye que existen relaciones significativas entre los factores de la competencia autopercibida docente (socioemocional, comunicativo-relacional e instruccional) y los enfoques de enseñanza (enfoque centrado en el profesor y en el alumno)

    Ecosystem-level effects of re-oligotrophication and N:P imbalances in rivers and estuaries on a global scale

    Get PDF
    Trends and ecological consequences of phosphorus (P) decline and increasing nitrogen (N) to phosphorus (N:P) ratios in rivers and estuaries are reviewed and discussed. Results suggest that re-oligotrophication is a dominant trend in rivers and estuaries of high-income countries in the last two-three decades, while in low-income countries widespread eutrophication occurs. The decline in P is well documented in hundreds of rivers of United States and the European Union, but the biotic response of rivers and estuaries besides phytoplankton decline such as trends in phytoplankton composition, changes in primary production, ecosystem shifts, cascading effects, changes in ecosystem metabolism, etc., have not been sufficiently monitored and investigated, neither the effects of N:P imbalance. N:P imbalance has significant ecological effects that need to be further investigated. There is a growing number of cases in which phytoplankton biomass have been shown to decrease due to re-oligotrophication, but the potential regime shift from phytoplankton to macrophyte dominance described in shallow lakes has been documented only in a few rivers and estuaries yet. The main reasons why regime shifts are rarely described in rivers and estuaries are, from one hand the scarcity of data on macrophyte cover trends, and from the other hand physical factors such as peak flows or high turbidity that could prevent a general spread of submerged macrophytes as observed in shallow lakes. Moreover, re-oligotrophication effects on rivers may be different compared to lakes (e.g., lower dominance of macrophytes) or estuaries (e.g., limitation of primary production by N instead of P) or may be dependent on river/estuary type. We conclude that river and estuary re-oligotrophication effects are complex, diverse and still little known, and in some cases are equivalent to those described in shallow lakes, but the regime shift is more likely to occur in mid to high-order rivers and shallow estuaries.info:eu-repo/semantics/publishedVersio

    Ecosystem-level effects of re-oligotrophication and N:P imbalances in rivers and estuaries on a global scale

    Get PDF
    Trends and ecological consequences of phosphorus (P) decline and increasing nitrogen (N) to phosphorus (N:P) ratios in rivers and estuaries are reviewed and discussed. Results suggest that re-oligotrophication is a dominant trend in rivers and estuaries of high-income countries in the last two–three decades, while in low-income countries widespread eutrophication occurs. The decline in P is well documented in hundreds of rivers of United States and the European Union, but the biotic response of rivers and estuaries besides phytoplankton decline such as trends in phytoplankton composition, changes in primary production, ecosystem shifts, cascading effects, changes in ecosystem metabolism, etc., have not been sufficiently monitored and investigated, neither the effects of N:P imbalance. N:P imbalance has significant ecological effects that need to be further investigated. There is a growing number of cases in which phytoplankton biomass have been shown to decrease due to re-oligotrophication, but the potential regime shift from phytoplankton to macrophyte dominance described in shallow lakes has been documented only in a few rivers and estuaries yet. The main reasons why regime shifts are rarely described in rivers and estuaries are, from one hand the scarcity of data on macrophyte cover trends, and from the other hand physical factors such as peak flows or high turbidity that could prevent a general spread of submerged macrophytes as observed in shallow lakes. Moreover, re-oligotrophication effects on rivers may be different compared to lakes (e.g., lower dominance of macrophytes) or estuaries (e.g., limitation of primary production by N instead of P) or may be dependent on river/estuary type. We conclude that river and estuary re-oligotrophication effects are complex, diverse and still little known, and in some cases are equivalent to those described in shallow lakes, but the regime shift is more likely to occur in mid to high-order rivers and shallow estuaries.This work was supported by a grant from the U.S. National Science Foundation (#DBI‐1639145) to the National Socio‐Environmental Synthesis Center (Rivershift Project). The work was also financially supported by the Catalan Government through the funding grant ACCIÓ‐Eurecat (Project AquaSCI‐2022)

    Ecosystem-level effects of re-oligotrophication and N:P imbalances in rivers and estuaries on a global scale

    Get PDF
    ABSTRACT: Trends and ecological consequences of phosphorus (P) decline and increasing nitrogen (N) to phosphorus (N:P) ratios in rivers and estuaries are reviewed and discussed. Results suggest that re-oligotrophication is a dominant trend in rivers and estuaries of high-income countries in the last two-three decades, while in low-income countries widespread eutrophication occurs. The decline in P is well documented in hundreds of rivers of United States and the European Union, but the biotic response of rivers and estuaries besides hytoplankton decline such as trends in phytoplankton composition, changes in primary production, ecosystem shifts, cascading effects, changes in ecosystem metabolism, etc., have not been sufficiently monitored and investigated, neither the effects of N:P imbalance. N:P imbalance has significant ecological effects that need to be further investigated. There is a growing number of cases in which phytoplankton biomass have been shown to decrease due to re-oligotrophication, but the potential regime shift from phytoplankton to macrophyte dominance described in shallow lakes has been documented only in a few rivers and estuaries yet. The main reasons why regime shifts are rarely described in rivers and estuaries are, from one hand the scarcity of data on macrophyte cover trends, and from the otherhand physical factors such as peak flows or high turbidity that could prevent a general spread of submerged macrophytes as observed in shallow lakes. Moreover, re-oligotrophication effects on rivers may be different compared to lakes (e.g., lower dominance of macrophytes) or estuaries (e.g., limitation of primary production by N instead of P) or may be dependent on river/estuary type. We conclude that river and estuary re-oligotrophication effects are complex, diverse and still little known, and in some cases are equivalent to those described in shallow lakes, but the regime shift is more likely to occur in mid to high-order rivers and shallow estuaries.This work was supported by a grant from the U.S. National Science Foundation (#DBI-1639145) to the National Socio-Environmental Synthesis Center (Rivershift Project). The work was also financially supported by the Catalan Government through the funding grant ACCIÓ-Eurecat (Project AquaSCI-2022)

    Effects of intubation timing in patients with COVID-19 throughout the four waves of the pandemic: a matched analysis

    Get PDF
    Background: The primary aim of our study was to investigate the association between intubation timing and hospital mortality in critically ill patients with COVID-19-associated respiratory failure. We also analysed both the impact of such timing throughout the first four pandemic waves and the influence of prior non-invasive respiratory support on outcomes. Methods: This is a secondary analysis of a multicentre, observational and prospective cohort study that included all consecutive patients undergoing invasive mechanical ventilation due to COVID-19 from across 58 Spanish intensive care units (ICU) participating in the CIBERESUCICOVID project. The study period was between 29 February 2020 and 31 August 2021. Early intubation was defined as that occurring within the first 24 h of intensive care unit (ICU) admission. Propensity score (PS) matching was used to achieve balance across baseline variables between the early intubation cohort and those patients who were intubated after the first 24 h of ICU admission. Differences in outcomes between early and delayed intubation were also assessed. We performed sensitivity analyses to consider a different timepoint (48 h from ICU admission) for early and delayed intubation. Results: Of the 2725 patients who received invasive mechanical ventilation, a total of 614 matched patients were included in the analysis (307 for each group). In the unmatched population, there were no differences in mortality between the early and delayed groups. After PS matching, patients with delayed intubation presented higher hospital mortality (27.3% versus 37.1%, p =0.01), ICU mortality (25.7% versus 36.1%, p=0.007) and 90-day mortality (30.9% versus 40.2%, p=0.02) when compared to the early intubation group. Very similar findings were observed when we used a 48-hour timepoint for early or delayed intubation. The use of early intubation decreased after the first wave of the pandemic (72%, 49%, 46% and 45% in the first, second, third and fourth wave, respectively; first versus second, third and fourth waves p<0.001). In both the main and sensitivity analyses, hospital mortality was lower in patients receiving high-flow nasal cannula (n=294) who were intubated earlier. The subgroup of patients undergoing NIV (n=214) before intubation showed higher mortality when delayed intubation was set as that occurring after 48 h from ICU admission, but not when after 24 h. Conclusions: In patients with COVID-19 requiring invasive mechanical ventilation, delayed intubation was associated with a higher risk of hospital mortality. The use of early intubation significantly decreased throughout the course of the pandemic. Benefits of such an approach occurred more notably in patients who had received high-flow nasal cannula.Financial support was provided by the Instituto de Salud Carlos III de Madrid (COV20/00110, ISCIII), Fondo Europeo de Desarrollo Regional (FEDER), "Una manera de hacer Europa", and the Centro de Investigación Biomedica En Red – Enfermedades Respiratorias (CIBERES). DdGC has received financial support from the Instituto de Salud Carlos III (Miguel Servet 2020: CP20/00041), co-funded by European Social Fund (ESF)/”Investing in your future”.Peer ReviewedArticle signat per 70 autors/es: Jordi Riera*1,2; Enric Barbeta*2,3,4; Adrián Tormos5; Ricard Mellado-Artigas2,3; Adrián Ceccato6; Anna Motos4; Laia Fernández-Barat4; Ricard Ferrer1; Darío García-Gasulla5; Oscar Peñuelas7; José Ángel Lorente7; Rosario Menéndez8; Oriol Roca1,2; Andrea Palomeque4,9; Carlos Ferrando2,3; Jordi SoléViolán10; Mariana Novo11; María Victoria Boado12; Luis Tamayo13; Ángel Estella14, Cristóbal Galban15; Josep Trenado16; Arturo Huerta17; Ana Loza18; Luciano Aguilera19; José Luís García Garmendia20; Carme Barberà21; Víctor Gumucio22; Lorenzo Socias23; Nieves Franco24; Luis Jorge Valdivia25; Pablo Vidal26; Víctor Sagredo27; Ángela Leonor Ruiz-García28; Ignacio Martínez Varela29; Juan López30; Juan Carlos Pozo31; Maite Nieto32; José M Gómez33; Aaron Blandino34; Manuel Valledor35; Elena Bustamante-Munguira36; Ángel Sánchez-Miralles37; Yhivian Peñasco38; José Barberán39; Alejandro Ubeda40; Rosario Amaya-Villar41; María Cruz Martín42; Ruth Jorge43; Jesús Caballero44; Judith Marin45; José Manuel Añón46; Fernando Suárez Sipmann47; Guillermo Muñiz2,48;Álvaro Castellanos-Ortega49; Berta Adell-Serrano50; Mercedes Catalán51; Amalia Martínez de la Gándara52; Pilar Ricart53; Cristina Carbajales54; Alejandro Rodríguez55; Emili Díaz6; Mari C de la Torre56; Elena Gallego57; Luisa Cantón-Bulnes58; Nieves Carbonell59, Jessica González60, David de Gonzalo-Calvo60, Ferran Barbé60 and Antoni Torres2,4,9 on behalf of the CiberesUCICOVID Consortium. // 1. Critical Care Department, Hospital Universitari Vall d’Hebron; SODIR, Vall d’Hebron Institut de Recerca, Barcelona, Spain. 2. CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain. 3.Surgical Intensive Care Unit, Hospital Clínic de Barcelona, Barcelona, Spain. 4. Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain. 5. Barcelona Supercomputing Center (BSC), Barcelona, Spain. 6. Critical Care Center, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Sabadell, Spain. Universitat Autonoma de Barcelona (UAB), Spain. 7. Hospital Universitario de Getafe, Universidad Europea, Madrid, Spain. 8. Pneumology Department, Hospital Universitario y Politécnico La Fe/Instituto de Investigación Sanitaria (IIS) La Fe, 46026 Valencia, Spain; Pneumology Department, Hospital Universitario y Politécnico La Fe, Avda, Fernando Abril Martorell 106, 46026 Valencia, Spain. 9.Respiratory Intensive Care Unit, Hospital Clínic de Barcelona, Barcelona, Spain. 10. Critical Care Department, Hospital Dr. Negrín Gran Canaria. Universidad Fernando Pessoa. Las Palmas, Gran Canaria, Spain. 11. Servei de Medicina Intensiva, Hospital Universitari Son Espases, Palma de Mallorca, Illes Balears, Spain. 12. Hospital Universitario de Cruces, Barakaldo, Spain. 13. Critical Care Department, Hospital Universitario Río Hortega de Valladolid, Valladolid, Spain. 14. Departamento Medicina Facultad Medicina Universidad de Cádiz. Hospital Universitario de Jerez, Jerez de la Frontera, Spain. 15. Department of Medicine, CHUS, Complejo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain. 16. Servicio de Medicina Intensiva, Hospital Universitario Mútua de Terrassa, Terrassa, Barcelona, Spain. 17. Pulmonary and Critical Care Division; Emergency Department, Clínica Sagrada Família, Barcelona, Spain. 18. Hospital Virgen de Valme, Sevilla, Spain. 19. Hospital de Basurto, Bilbao, Spain. 20. Intensive Care Unit, Hospital San Juan de Dios del Aljarafe, Bormujos, Sevilla, Spain. 21. Hospital Santa Maria; IRBLleida, Lleida, Spain. 22. Department of Intensive Care. Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain. Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain. 23. Intensive Care Unit, Hospital Son Llàtzer, Palma de Mallorca, Illes Balears, Spain. 24. Hospital Universitario de Móstoles, Madrid, Spain. 25. Hospital Universitario de León, León, Spain. 26. Complexo Hospitalario Universitario de Ourense, Ourense, Spain. 27. Hospital Universitario de Salamanca, Salamanca, Spain. 28. Servicio de Microbiología Clínica, Hospital Universitario Príncipe de Asturias – Departamento de Biomedicina y Biotecnología, Universidad de Alcalá de Henares, Madrid, Spain. 29. Critical Care Department, Hospital Universitario Lucus Augusti, Lugo, Spain. 30. Complejo Asistencial Universitario de Palencia, Palencia, Spain. 31. UGC-Medicina Intensiva, Hospital Universitario Reina Sofia, Instituto Maimonides IMIBIC, Córdoba, Spain. 32. Hospital Universitario de Segovia, Segovia, Spain. 33. Hospital General Universitario Gregorio Marañón, Madrid, Spain. 34. Servicio de Medicina Intensiva, Hospital Universitario Ramón y Cajal, Madrid, Spain. 35. Hospital Universitario "San Agustín", Avilés, Spain. 36. Department of Intensive Care Medicine, Hospital Clínico Universitario Valladolid, Valladolid, Spain. 37. Servicio de Medicina Intensiva. Hospital Universitario Sant Joan d´Alacant, Alicante, Spain. 38. Servicio de Medicina Intensiva, Hospital Universitario Marqués de Valdecilla, Santander, Spain. 39. Hospital Universitario HM Montepríncipe, Universidad San Pablo-CEU, Madrid, Spain. 40. Servicio de Medicina Intensiva, Hospital Punta de Europa, Algeciras, Spain. 41. Intensive Care Clinical Unit, Hospital Universitario Virgen de Rocío, Sevilla, Spain. 42. Hospital Universitario Torrejón- Universidad Francisco de Vitoria, Madrid, Spain. 43. Intensive Care Department, Hospital Nuestra Señora de Gracia, Zaragoza, Spain. 44. Critical Care Department, Hospital Universitari Arnau de Vilanova; IRBLleida, Lleida, Spain. 45. Critical Care Department, Hospital del Mar-IMIM, Barcelona, Spain. 46. Hospital Universitario la Paz, Madrid, Spain. 47. Intensive Care Unit, Hospital Universitario La Princesa, Madrid, Spain. 48. Departamento de Biología Funcional. Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo; Instituto de Investigación Sanitaria del Principado de Asturias, Hospital Central de Asturias, Oviedo, Spain. 49. Hospital Universitario y Politécnico la Fe, Valencia, Spain. 50. Hospital de Tortosa Verge de la Cinta, Tortosa, Tarragona, Spain. 51. Department of Intensive Care Medicine, Hospital Universitario 12 de Octubre, Madrid, Spain. 52. Hospital Universitario Infanta Leonor, Madrid, Spain. 53. Servei de Medicina Intensiva, Hospital Universitari Germans Trias, Badalona, Spain. 54. Intensive Care Unit, Hospital Álvaro Cunqueiro, Vigo, Spain. 55. Hospital Universitari Joan XXIII de Tarragona, Tarragona, Spain. 56. Hospital de Mataró de Barcelona, Spain. 57. Unidad de Cuidados Intensivos, Hospital Universitario San Pedro de Alcántara, Cáceres, Spain. 58. Unidad de Cuidados Intensivos, Hospital Virgen Macarena, Sevilla, Spain. 59. Intensive Care Unit, Hospital Clínico y Universitario de Valencia, Valencia, Spain. 60. Translational Research in Respiratory Medicine, Respiratory Department, Hospital Universitari Aranu de Vilanova and Santa Maria, IRBLleida, Lleida, Spain.Postprint (published version

    Major candidate variables to guide personalised treatment with steroids in critically ill patients with COVID-19: CIBERESUCICOVID study

    Get PDF
    Purpose: Although there is evidence supporting the benefits of corticosteroids in patients affected with severe coronavirus disease 2019 (COVID-19), there is little information related to their potential benefits or harm in some subgroups of patients admitted to the intensive care unit (ICU) with COVID-19. We aim to investigate to find candidate variables to guide personalized treatment with steroids in critically ill patients with COVID-19. Methods: Multicentre, observational cohort study including consecutive COVID-19 patients admitted to 55 Spanish ICUs. The primary outcome was 90-day mortality. Subsequent analyses in clinically relevant subgroups by age, ICU baseline illness severity, organ damage, laboratory findings and mechanical ventilation were performed. High doses of corticosteroids (≥ 12 mg/day equivalent dexamethasone dose), early administration of corticosteroid treatment (< 7 days since symptom onset) and long term of corticosteroids (≥ 10 days) were also investigated. Results: Between February 2020 and October 2021, 4226 patients were included. Of these, 3592 (85%) patients had received systemic corticosteroids during hospitalisation. In the propensity-adjusted multivariable analysis, the use of corticosteroids was protective for 90-day mortality in the overall population (HR 0.77 [0.65–0.92], p = 0.003) and in-hospital mortality (SHR 0.70 [0.58–0.84], p < 0.001). Significant effect modification was found after adjustment for covariates using propensity score for age (p = 0.001 interaction term), Sequential Organ Failure Assessment (SOFA) score (p = 0.014 interaction term), and mechanical ventilation (p = 0.001 interaction term). We observed a beneficial effect of corticosteroids on 90-day mortality in various patient subgroups, including those patients aged ≥ 60 years; those with higher baseline severity; and those receiving invasive mechanical ventilation at ICU admission. Early administration was associated with a higher risk of 90-day mortality in the overall population (HR 1.32 [1.14–1.53], p < 0.001). Long-term use was associated with a lower risk of 90-day mortality in the overall population (HR 0.71 [0.61–0.82], p < 0.001). No effect was found regarding the dosage of corticosteroids. Moreover, the use of corticosteroids was associated with an increased risk of nosocomial bacterial pneumonia and hyperglycaemia. Conclusion: Corticosteroid in ICU-admitted patients with COVID-19 may be administered based on age, severity, baseline inflammation, and invasive mechanical ventilation. Early administration since symptom onset may prove harmful.15 página

    Role of the Transforming Growth Factor-β in regulating hepatocellular carcinoma oxidative metabolism.

    Get PDF
    Transforming Growth Factor beta (TGF-β) induces tumor cell migration and invasion. However, its role in inducing metabolic reprogramming is poorly understood. Here we analyzed the metabolic profle of hepatocellular carcinoma (HCC) cells that show diferences in TGF-β expression. Oxygen consumption rate (OCR), extracellular acidifcation rate (ECAR), metabolomics and transcriptomics were performed. Results indicated that the switch from an epithelial to a mesenchymal/migratory phenotype in HCC cells is characterized by reduced mitochondrial respiration, without signifcant diferences in glycolytic activity. Concomitantly, enhanced glutamine anaplerosis and biosynthetic use of TCA metabolites were proved through analysis of metabolite levels, as well as metabolic fuxes from U-13C6-Glucose and U-13C5-Glutamine. This correlated with increase in glutaminase 1 (GLS1) expression, whose inhibition reduced cell migration. Experiments where TGF-β function was activated with extracellular TGF-β1 or inhibited through TGF-β receptor I silencing showed that TGF-β induces a switch from oxidative metabolism, coincident with a decrease in OCR and the upregulation of glutamine transporter Solute Carrier Family 7 Member 5 (SLC7A5) and GLS1. TGF-β also regulated the expression of key genes involved in the fux of glycolytic intermediates and fatty acid metabolism. Together, these results indicate that autocrine activation of the TGF-β pathway regulates oxidative metabolism in HCC cells
    corecore