38 research outputs found

    Malignant melanoma arising from a perianal fistula and harbouring a BRAF gene mutation: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Melanoma of the anal region is a very uncommon disease, accounting for only 0.2-0.3% of all melanoma cases. Mutations of the <it>BRAF </it>gene are usually absent in melanomas occurring in this region as well as in other sun-protected regions. The development of a tumour in a longstanding perianal fistula is also extremely rare. More frequent is the case of a tumour presenting as a fistula, that is, the fistula being a consequence of the cancerous process, although we have found only two cases of fistula-generating melanomas reported in the literature.</p> <p>Case Presentation</p> <p>Here we report the case of a 38-year-old male who presented with a perianal fistula of four years of evolution. Histopathological examination of the fistulous tract confirmed the presence of malignant melanoma. Due to the small size and the central location of the melanoma inside the fistulous tract, we believe the melanoma reported here developed in the epithelium of the fistula once the latter was already formed. Resected sentinel lymph nodes were negative and the patient, after going through a wide local excision, remains disease-free nine years after diagnosis. DNA obtained from melanoma tissue was analysed by automated direct sequencing and the <it>V600E </it>(<it>T1799A</it>) mutation was detected in exon 15 of the <it>BRAF </it>gene.</p> <p>Conclusion</p> <p>Since fistulae experience persistent inflammation, the fact that this melanoma harbours a <it>BRAF </it>mutation strengthens the view that oxidative stress caused by inflammatory processes plays an important role in the genesis of <it>BRAF </it>gene mutations.</p

    Examining the association between exposome score for schizophrenia and functioning in schizophrenia, siblings, and healthy controls: Results from the EUGEI study.

    Get PDF
    Background. A cumulative environmental exposure score for schizophrenia (exposome score for schizophrenia [ES-SCZ]) may provide potential utility for risk stratification and outcome prediction. Here, we investigated whether ES-SCZ was associated with functioning in patients with schizophrenia spectrum disorder, unaffected siblings, and healthy controls. Methods. This cross-sectional sample consisted of 1,261 patients, 1,282 unaffected siblings, and 1,525 healthy controls. The Global Assessment of Functioning (GAF) scale was used to assess functioning. ES-SCZ was calculated based on our previously validated method. The association between ES-SCZ and the GAF dimensions (symptom and disability) was analyzed by applying regression models in each group (patients, siblings, and controls). Additional models included polygenic risk score for schizophrenia (PRS-SCZ) as a covariate. Results. ES-SCZ was associated with the GAF dimensions in patients (symptom: B = 1.53, p-value = 0.001; disability: B = 1.44, p-value = 0.001), siblings (symptom: B = 3.07, p-value < 0.001; disability: B = 2.52, p-value < 0.001), and healthy controls (symptom: B = 1.50, p-value < 0.001; disability: B = 1.31, p-value < 0.001). The results remained the same after adjusting for PRS-SCZ. The degree of associations of ES-SCZ with both symptom and disability dimensions were higher in unaffected siblings than in patients and controls. By analyzing an independent dataset (the Genetic Risk and Outcome of Psychosis study), we replicated the results observed in the patient group. Conclusions. Our findings suggest that ES-SCZ shows promise for enhancing risk prediction and stratification in research practice. From a clinical perspective, ES-SCZ may aid in efforts of clinical characterization, operationalizing transdiagnostic clinical staging models, and personalizing clinical management

    Replicated evidence that endophenotypic expression of schizophrenia polygenic risk is greater in healthy siblings of patients compared to controls, suggesting gene-environment interaction. The EUGEI study

    Get PDF
    Background First-degree relatives of patients with psychotic disorder have higher levels of polygenic risk (PRS) for schizophrenia and higher levels of intermediate phenotypes. Methods We conducted, using two different samples for discovery (n = 336 controls and 649 siblings of patients with psychotic disorder) and replication (n = 1208 controls and 1106 siblings), an analysis of association between PRS on the one hand and psychopathological and cognitive intermediate phenotypes of schizophrenia on the other in a sample at average genetic risk (healthy controls) and a sample at higher than average risk (healthy siblings of patients). Two subthreshold psychosis phenotypes, as well as a standardised measure of cognitive ability, based on a short version of the WAIS-III short form, were used. In addition, a measure of jumping to conclusion bias (replication sample only) was tested for association with PRS. Results In both discovery and replication sample, evidence for an association between PRS and subthreshold psychosis phenotypes was observed in the relatives of patients, whereas in the controls no association was observed. Jumping to conclusion bias was similarly only associated with PRS in the sibling group. Cognitive ability was weakly negatively and non-significantly associated with PRS in both the sibling and the control group. Conclusions The degree of endophenotypic expression of schizophrenia polygenic risk depends on having a sibling with psychotic disorder, suggestive of underlying gene–environment interaction. Cognitive biases may better index genetic risk of disorder than traditional measures of neurocognition, which instead may reflect the population distribution of cognitive ability impacting the prognosis of psychotic disorder

    Customized Treatment in Non-Small-Cell Lung Cancer Based on EGFR Mutations and BRCA1 mRNA Expression

    Get PDF
    BACKGROUND: Median survival is 10 months and 2-year survival is 20% in metastatic non-small-cell lung cancer (NSCLC) treated with platinum-based chemotherapy. A small fraction of non-squamous cell lung cancers harbor EGFR mutations, with improved outcome to gefitinib and erlotinib. Experimental evidence suggests that BRCA1 overexpression enhances sensitivity to docetaxel and resistance to cisplatin. RAP80 and Abraxas are interacting proteins that form complexes with BRCA1 and could modulate the effect of BRCA1. In order to further examine the effect of EGFR mutations and BRCA1 mRNA levels on outcome in advanced NSCLC, we performed a prospective non-randomized phase II clinical trial, testing the hypothesis that customized therapy would confer improved outcome over non-customized therapy. In an exploratory analysis, we also examined the effect of RAP80 and Abraxas mRNA levels. METHODOLOGY/PRINCIPAL FINDINGS: We treated 123 metastatic non-squamous cell lung carcinoma patients using a customized approach. RNA and DNA were isolated from microdissected specimens from paraffin-embedded tumor tissue. Patients with EGFR mutations received erlotinib, and those without EGFR mutations received chemotherapy with or without cisplatin based on their BRCA1 mRNA levels: low, cisplatin plus gemcitabine; intermediate, cisplatin plus docetaxel; high, docetaxel alone. An exploratory analysis examined RAP80 and Abraxas expression. Median survival exceeded 28 months for 12 patients with EGFR mutations, and was 11 months for 38 patients with low BRCA1, 9 months for 40 patients with intermediate BRCA1, and 11 months for 33 patients with high BRCA1. Two-year survival was 73.3%, 41.2%, 15.6% and 0%, respectively. Median survival was influenced by RAP80 expression in the three BRCA1 groups. For example, for patients with both low BRCA1 and low RAP80, median survival exceeded 26 months. RAP80 was a significant factor for survival in patients treated according to BRCA1 levels (hazard ratio, 1.3 [95% CI, 1-1.7]; P = 0.05). CONCLUSIONS/SIGNIFICANCE: Chemotherapy customized according to BRCA1 expression levels is associated with excellent median and 2-year survival for some subsets of NSCLC patients , and RAP80 could play a crucial modulating effect on this model of customized chemotherapy. TRIAL REGISTRATION: (ClinicalTrials.gov) NCT00883480

    De novo mutations identified by exome sequencing implicate rare missense variants in SLC6A1 in schizophrenia

    Get PDF
    Schizophrenia is a highly polygenic disorder with important contributions from both common and rare risk alleles. We analyzed exome sequencing data for de novo variants (DNVs) in a new sample of 613 schizophrenia trios and combined this with published data to give a total of 3,444 trios. In this new data, loss-of-function (LoF) DNVs were significantly enriched among 3,471 LoF-intolerant genes, which supports previous findings. In the full dataset, genes associated with neurodevelopmental disorders (n = 159) were significantly enriched for LoF DNVs. Within these neurodevelopmental disorder genes, SLC6A1, which encodes a γ-aminobutyric acid transporter, was associated with missense-damaging DNVs. In 1,122 trios for which genome-wide common variant data were available, schizophrenia and bipolar disorder polygenic risk were significantly overtransmitted to probands. Probands carrying LoF or deletion DNVs in LoF-intolerant or neurodevelopmental disorder genes had significantly less overtransmission of schizophrenia polygenic risk than did non-carriers, which provides a second robust line of evidence that these DNVs increase liability to schizophrenia

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    Get PDF
    Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies

    Clustering schizophrenia genes by their temporal expression patterns aids functional interpretation

    Get PDF
    Background Schizophrenia is a highly heritable brain disorder with a typical symptom onset in early adulthood. The 2-hit hypothesis posits that schizophrenia results from differential early neurodevelopment, predisposing an individual, followed by a disruption of later brain maturational processes that trigger the onset of symptoms. Study design We applied hierarchical clustering to transcription levels of 345 genes previously linked to schizophrenia, derived from cortical tissue samples from 56 donors across the lifespan. We subsequently calculated clustered-specific polygenic risk scores for 743 individuals with schizophrenia and 743 sex- and age-matched healthy controls. Study results Clustering revealed a set of 183 genes that was significantly upregulated prenatally and downregulated postnatally and 162 genes that showed the opposite pattern. The prenatally upregulated set of genes was functionally annotated to fundamental cell cycle processes, while the postnatally upregulated set was associated with the immune system and neuronal communication. We found an interaction between the 2 scores; higher prenatal polygenic risk showed a stronger association with schizophrenia diagnosis at higher levels of postnatal polygenic risk. Importantly, this finding was replicated in an independent clinical cohort of 3233 individuals. Conclusions We provide genetics-based evidence that schizophrenia is shaped by disruptions of separable biological processes acting at distinct phases of neurodevelopment. The modeling of genetic risk factors that moderate each other’s effect, informed by the timing of their expression, will aid in a better understanding of the development of schizophrenia

    Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia

    Get PDF
    Schizophrenia has a heritability of 60–80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies
    corecore