34 research outputs found

    Targeting a G-Protein-Coupled Receptor Overexpressed in Endocrine Tumors by Magnetic Nanoparticles To Induce Cell Death

    Get PDF
    Nanotherapy using targeted magnetic nanoparticles grafted with peptidic ligands of receptors overexpressed in cancers is a promising therapeutic strategy. However, nanoconjugation of peptides can dramatically affect their properties with respect to receptor recognition, mechanism of internalization, intracellular trafficking, and fate. Furthermore, investigations are needed to better understand the mechanism whereby application of an alternating magnetic field to cells containing targeted nanoparticles induces cell death. Here, we designed a nanoplatform (termed MG-IONP-DY647) composed of an iron oxide nanocrystal decorated with a ligand of a G-protein coupled receptor, the cholecystokinin-2 receptor (CCK2R) that is overexpressed in several malignant cancers. MG-IONP-DY647 did not stimulate inflammasome of Raw 264.7 macrophages. They recognized cells expressing CCK2R with a high specificity, subsequently internalized via a mechanism involving recruitment of β-arrestins, clathrin-coated pits, and dynamin and were directed to lysosomes. Binding and internalization of MG-IONP-DY647 were dependent on the density of the ligand at the nanoparticle surface and were slowed down relative to free ligand. Trafficking of CCK2R internalized with the nanoparticles was slightly modified relative to CCK2R internalized in response to free ligand. Application of an alternating magnetic field to cells containing MG-IONP-DY647 induced apoptosis and cell death through a lysosomal death pathway, demonstrating that cell death is triggered even though nanoparticles of low thermal power are internalized in minute amounts by the cells. Together with pioneer findings using iron oxide nanoparticles targeting tumoral cells expressing epidermal growth factor receptor, these data represent a solid basis for future studies aiming at establishing the proof-of-concept of nanotherapy of cancers using ligand-grafted magnetic nanoparticles specifically internalized via cell surface receptors

    A new HPF specimen carrier adapter for the use of high-pressure freezing with cryo-scanning electron microscope: two applications: stearic acid organization in a hydroxypropyl methylcellulose matrix and mice myocardium .

    Get PDF
    Cryogenic transmission electron microscopy of high-pressure freezing (HPF) samples is a well-established technique for the analysis of liquid containing specimens. This technique enables observation without removing water or other volatile components. The HPF technique is less used in scanning electron microscopy (SEM) due to the lack of a suitable HPF specimen carrier adapter. The traditional SEM cryotransfer system (PP3000T Quorum Laughton, East Sussex, UK; Alto Gatan, Pleasanton, CA, USA) usually uses nitrogen slush. Unfortunately, and unlike HPF, nitrogen slush produces water crystal artefacts. So, we propose a new HPF specimen carrier adapter for sample transfer from HPF system to cryogenic-scanning electronic microscope (Cryo-SEM). The new transfer system is validated using technical two applications, a stearic acid in hydroxypropyl methylcellulose solution and mice myocardium. Preservation of samples is suitable in both cases. Cryo-SEM examination of HPF samples enables a good correlation between acid stearic liquid concentration and acid stearic occupation surface (only for homogeneous solution). For biological samples as myocardium, cytoplasmic structures of cardiomyocyte are easily recognized with adequate preservation of organelle contacts and inner cell organization. We expect this new HPF specimen carrier adapter would enable more SEM-studies using HPF

    Identification de nouvelles cibles du Tamoxifène impliquées dans son activité pharmacologique

    No full text
    TOULOUSE3-BU Sciences (315552104) / SudocSudocFranceF

    Réalisations phares en microscopie des colonies bactériennes en matrices fromagères

    No full text
    Contexte de l’étude : Les bactéries jouent un rôle clé dans l’affinage et la flaveur du fromage et se développent en colonies.Questions : Quels sont les outils et les méthodes les mieux adaptés en microscopie pour observer les interfaces entre colonie de bactéries (Lactococcus Lactis (coque de 1μm de diamètre)) et matrice solide ainsi que l’organisation des bactéries dans les colonies

    Dark Field Transmission Electron Microscopy Imaging for Biological and Soft Matter Systems

    No full text
    International audienceIn this study, we present a new application of the transmission electron microscopy dark field mode for cell imaging. We have applied this imaging mode to two types of cellular systems: human HeLa cells to analyze molecular membrane systems and HC11 mouse mammary cells containing lipid molecule droplets. We have also studied a third macromolecular system, copolymer nanoparticles for the characterization of core-shell structures. We want to show the effective use of diffraction contrast, even on amorphous systems for increasing the image contrast and the signal/noise ratio. We discuss the TEM dark field advantages for the analysis of polymers and other macromolecular systems, including biological, systems compared to the bright field mode

    Chemical synthesis and biochemical properties of cholestane-5α,6β-diol-3-sulfonate: A non-hydrolysable analogue of cholestane-5α,6β-diol-3β-sulfate

    No full text
    International audienceCholestane-3β,5α,6β-triol (CT) is a primary metabolite of 5,6-epoxycholesterols (5,6-EC) that is catalyzed by the cholesterol-5,6-epoxide hydrolase (ChEH). CT is a well-known biomarker for Niemann-Pick disease type C (NPC), a progressive inherited neurodegenerative disease. On the other hand, CT is known to be metabolized by the 11β-hydroxysteroid-dehydrogenase of type 2 (11β-HSD2) into a tumor promoter named oncosterone that stimulates the growth of breast cancer tumors. Sulfation is a major metabolic transformation leading to the production of sulfated oxysterols. The production of cholestane-5α,6β-diol-3β-O-sulfate (CDS) has been reported in breast cancer cells. However, no data related to CDS biological properties have been reported so far. These studies have been hampered because sulfate esters of sterols and steroids are rapidly hydrolyzed by steroid sulfatase to give free steroids and sterols. In order to get insight into the biological properties of CDS, we report herein the synthesis and the characterization of cholestane-5α,6β-diol-3β-sulfonate (CDSN), a non-hydrolysable analogue of CDS. We show that CDSN is a potent inhibitor of 11β-HSD2 that blocks oncosterone production on cell lysate. The inhibition of oncosterone biosynthesis of a whole cell assay was observed but results from the blockage by CDSN of the uptake of CT in MCF-7 cells. While CDSN inhibits MCF-7 cell proliferation, we found that it potentiates the cytotoxic activity of post-lanosterol cholesterol biosynthesis inhibitors such as tamoxifen and PBPE. This effect was associated with an increase of free sterols accumulation and the appearance of giant multilamellar bodies, a structural feature reminiscent of Type C Niemann-Pick disease cells and consistent with a possible inhibition by CDSN of NPC1. Altogether, our data showed that CDSN is biologically active and that it is a valuable tool to study the biological properties of CDS and more specifically its impact on immunity and viral infection
    corecore