819 research outputs found

    The SF36 as an outcome measure of services for end stage renal failure

    Get PDF
    OBJECTIVE: —To evaluate the use of the short form 36 (SF36) as a measure of health related quality of life of patients with end stage renal failure, document the results, and investigate factors, including mode of treatment, which may influence it. DESIGN: Cross sectional survey of patients with end stage renal failure, with the standard United Kingdom version of the SF36 supplemented by specific questions for end stage renal failure. SETTING: A teaching hospital renal unit. Subjects and methods—660 patients treated at the Sheffield Kidney Institute by haemodialysis, peritoneal dialysis, and transplantation. Internal consistency, percentage of maximal or minimal responses, SF36 scores, effect sizes, correlations between independent predictor variables and individual dimension scores of the SF36. Multiple regression analysis of the SF36 scores for the physical functioning, vitality, and mental health dimensions against treatment, age, risk (comorbidity) score, and other independent variables. RESULTS: A high response rate was achieved. Internal consistency was good. There were no floor or ceiling effects other than for the two “role” dimensions. Overall health related quality of life was poor compared with the general population. Having a functioning transplant was a significant predictor of higher score in the three dimensions (physical functioning, vitality, and mental health) for which multiple regression models were constructed. Age, sex, comorbidity, duration of treatment, level of social and emotional support, household numbers, and hospital dialysis were also (variably) significant predictors. CONCLUSIONS: The SF36 is a practical and consistent questionnaire in this context, and there is evidence to support its construct validity. Overall the health related quality of life of these patients is poor, although transplantation is associated with higher scores independently of the effect of age and comorbidity. Age, comorbidity, and sex are also predictive of the scores attained in the three dimensions studied. Further studies are required to ascertain whether altering those predictor variables which are under the influence of professional carers is associated with changes in health related quality of life, and thus confirm the value of this outcome as a measure of quality of care

    quasiharmonic equations of state for dynamically-stabilized soft-mode materials

    Get PDF
    We introduce a method for treating soft modes within the analytical framework of the quasiharmonic equation of state. The corresponding double-well energy-displacement relation is fitted to a functional form that is harmonic in both the low- and high-energy limits. Using density-functional calculations and statistical physics, we apply the quasiharmonic methodology to solid periclase. We predict the existence of a B1--B2 phase transition at high pressures and temperatures

    Exchange and correlation as a functional of the local density of states

    Full text link
    A functional Exc[ρ(,˚ϵ)]E_{xc}[\rho(\r,\epsilon)] is presented, in which the exchange and correlation energy of an electron gas depends on the local density of occupied states. A simple local parametrization scheme is proposed, entirely from first principles, based on the decomposition of the exchange-correlation hole in scattering states of different relative energies. In its practical Kohn-Sham-like form, the single-electron orbitals become the independent variables, and an explicit formula for the functional derivative is obtained.Comment: 5 pages. Expanded version. Will appear in Phys. Rev.

    First Principles Calculation of Elastic Properties of Solid Argon at High Pressures

    Full text link
    The density and the elastic stiffness coefficients of fcc solid argon at high pressures from 1 GPa up to 80 GPa are computed by first-principles pseudopotential method with plane-wave basis set and the generalized gradient approximation (GGA). The result is in good agreement with the experimental result recently obtained with the Brillouin spectroscopy by Shimizu et al. [Phys. Rev. Lett. 86, 4568 (2001)]. The Cauchy condition was found to be strongly violated as in the experimental result, indicating large contribution from non-central many-body force. The present result has made it clear that the standard density functional method with periodic boundary conditions can be successfully applied for calculating elastic properties of rare gas solids at high pressures in contrast to those at low pressures where dispersion forces are important.Comment: 4 pages, 5 figures, submitted to PR

    Reversible Band Gap Engineering in Carbon Nanotubes by Radial Deformation

    Full text link
    We present a systematic analysis of the effect of radial deformation on the atomic and electronic structure of zigzag and armchair single wall carbon nanotubes using the first principle plane wave method. The nanotubes were deformed by applying a radial strain, which distorts the circular cross section to an elliptical one. The atomic structure of the nanotubes under this strain are fully optimized, and the electronic structure is calculated self-consistently to determine the response of individual bands to the radial deformation. The band gap of the insulating tube is closed and eventually an insulator-metal transition sets in by the radial strain which is in the elastic range. Using this property a multiple quantum well structure with tunable and reversible electronic structure is formed on an individual nanotube and its band-lineup is determined from first-principles. The elastic energy due to the radial deformation and elastic constants are calculated and compared with classical theories.Comment: To be appear in Phys. Rev. B, Apr 15, 200

    Density-functional embedding using a plane-wave basis

    Full text link
    The constrained electron density method of embedding a Kohn-Sham system in a substrate system (first described by P. Cortona, Phys. Rev. B {\bf 44}, 8454 (1991) and T.A. Wesolowski and A. Warshel, J. Phys. Chem {\bf 97}, 8050 (1993)) is applied with a plane-wave basis and both local and non-local pseudopotentials. This method divides the electron density of the system into substrate and embedded electron densities, the sum of which is the electron density of the system of interest. Coupling between the substrate and embedded systems is achieved via approximate kinetic energy functionals. Bulk aluminium is examined as a test case for which there is a strong interaction between the substrate and embedded systems. A number of approximations to the kinetic-energy functional, both semi-local and non-local, are investigated. It is found that Kohn-Sham results can be well reproduced using a non-local kinetic energy functional, with the total energy accurate to better than 0.1 eV per atom and good agreement between the electron densities.Comment: 11 pages, 4 figure

    Improved tensor-product expansions for the two-particle density matrix

    Full text link
    We present a new density-matrix functional within the recently introduced framework for tensor-product expansions of the two-particle density matrix. It performs well both for the homogeneous electron gas as well as atoms. For the homogeneous electron gas, it performs significantly better than all previous density-matrix functionals, becoming very accurate for high densities and outperforming Hartree-Fock at metallic valence electron densities. For isolated atoms and ions, it is on a par with previous density-matrix functionals and generalized gradient approximations to density-functional theory. We also present analytic results for the correlation energy in the low density limit of the free electron gas for a broad class of such functionals.Comment: 4 pages, 2 figure

    Ab initio density functional investigation of B_24 cluster: Rings, Tubes, Planes, and Cages

    Get PDF
    We investigate the equilibrium geometries and the systematics of bonding in various isomers of a 24-atom boron cluster using Born-Oppenheimer molecular dynamics within the framework of density functional theory. The isomers studied are the rings, the convex and the quasiplanar structures, the tubes and, the closed structures. A staggered double-ring is found to be the most stable structure amongst the isomers studied. Our calculations reveal that a 24-atom boron cluster does form closed 3-d structures. All isomers show staggered arrangement of nearest neighbor atoms. Such a staggering facilitates sp2sp^2 hybridization in boron cluster. A polarization of bonds between the peripheral atoms in the ring and the planar isomers is also seen. Finally, we discuss the fusion of two boron icosahedra. We find that the fusion occurs when the distance between the two icosahedra is less than a critical distance of about 6.5a.u.Comment: 8 pages, 9 figures in jpeg format Editorially approved for publication in Phys. Rev.

    Exo-hydrogenated Single Wall Carbon Nanotubes

    Full text link
    An extensive first-principles study of fully exo-hydrogenated zigzag (n,0) and armchair (n,n) single wall carbon nanotubes (Cn_nHn_n), polyhedral molecules including cubane, dodecahedrane, and C60_{60}H60_{60} points to crucial differences in the electronic and atomic structures relevant to hydrogen storage and device applications. Cn_nHn_n's are estimated to be stable up to the radius of a (8,8) nanotube, with binding energies proportional to 1/R. Attaching a single hydrogen to any nanotube is always exothermic. Hydrogenation of zigzag nanotubes is found to be more likely than armchair nanotubes with similar radius. Our findings may have important implications for selective functionalization and finding a way of separating similar radius nanotubes from each other.Comment: 5 pages, 4 postscript figures, Revtex file, To be appear in Physical Review

    Propagation model for multimode optical-fibre waveguide

    No full text
    Pulse dispersions of 5 ps/m have been measured in cladded-glass and liquid-core multimode fibres. A theoretical model is proposed which gives excellent agreement with measured propagation delay and pulse dispersion. In the fibres used, there is little light scattering either in the core or at the core-cladding interface
    corecore