159 research outputs found

    Synthesis and electrochemical study of CoNi2S4 as a novel cathode material in a primary Li thermal battery

    Get PDF
    The authors acknowledge support and contribution from AWE Plc for this work, and thank the STFC for neutron diffraction beam-time.In this work CoNi2S4 was investigated as a candidate cathode material for Li thermal batteries. The CoNi2S4 was synthesized by a solid state reaction at 550◦C in a sealed quartz tube. Neutron powder diffraction was utilized to confirm normal spinel structure up to 200◦C, however, there was cation disorder above this temperature. The electrochemical properties of the batteries were investigated at 500◦C by galvanostatic discharge to elucidate the mechanism and the products NiS, Co3S4 and Co9S8 of the discharge mechanism were confirmed using powder X-ray diffraction. CoNi2S4 exhibits two voltage plateaus vs Li13Si4 at 500◦C, one at 1.75 V and the second at 1.50 V. CoNi2S4 has an overall capacity of 318 mA h g−1 from OCV 2.58 V to 1.25 V vs Li13Si4 which is comparable to that of the well-known metal disulfidesPublisher PDFPeer reviewe

    Zirconium trisulfide as a promising cathode material for Li primary thermal batteries

    Get PDF
    In this work ZrS3 has been synthesized by solid state reaction in a sealed quartz tube and investigated as a candidate cathode material in Li thermal batteries. The structure of ZrS3 before and after cell testing has been studied using powder X-ray diffraction. A new spinel related material, LiZr2S4, has been identified as the product of the electrochemical process, which can be indexed to a = 10.452(8) Å cubic unit cell. The electrochemical properties of the batteries were investigated at 500 °C against Li13Si4 by galvanostatic discharge and galvanostatic intermittent titration technique (GITT). In a thermal Li cell at 500 °C a single voltage plateau of 1.70 V at a current density of 11 mA/cm2 was achieved with capacity of 357 mA h g-1. Therefore ZrS3 material has some promise as a cathode for Li thermal batteries.Publisher PDFPeer reviewe

    An Exhaustive Symmetry Approach to Structure Determination: Phase Transitions in Bi2Sn2O7

    Get PDF
    The exploitable properties of many materials are intimately linked to symmetry-lowering structural phase transitions. We present an automated and exhaustive symmetry-mode method for systematically exploring and solving such structures which will be widely applicable to a range of functional materials. We exemplify the method with an investigation of the Bi2Sn2O7 pyrochlore, which has been shown to undergo transitions from a parent γ cubic phase to β and α structures on cooling. The results include the first reliable structural model for β-Bi2Sn2O7 (orthorhombic Aba2, a = 7.571833(8), b = 21.41262(2), and c = 15.132459(14) Å) and a much simpler description of α-Bi2Sn2O7 (monoclinic Cc, a = 13.15493(6), b = 7.54118(4), and c = 15.07672(7) Å, β = 125.0120(3)°) than has been presented previously. We use the symmetry-mode basis to describe the phase transition in terms of coupled rotations of the Bi2O′ anti-cristobalite framework, which allow Bi atoms to adopt low-symmetry coordination environments favored by lone-pair cations

    Neurology

    Get PDF
    Contains reports on five research projects.United States Navy, Office of Naval Research (Nonr-609(39))United States Army Chemical Corps (DA-18-108-405-Cml-942)United States Air Force (Contract AF33(616)-7282)United States Public Health Service (B-3055, B-3090

    Effect of halide-mixing on tolerance factor and charge-carrier dynamics in (CH3NH3PbBr3-xClx) perovskites powders

    Get PDF
    The authors are highly thankful for the financial support of Higher Education Commission (HEC) Pakistan through the equipment/research grants (6976/Federal/NRPU/R&D/HEC/2017), (20-3071/NRPU/R&D/HEC/13). Author ZS acknowledges HEC for indigenous PhD Fellowship Phase-II, Batch-II, 2013, PIN 213-66018-2PS2-127 and International Research Support Initiative Programme (IRSIP). Author LKJ acknowledges support from a Marie Skłodowska-Curie Individual Fellowship (European Commission) (MCIF: No. 745776).This work demonstrates a route to making mixed halide perovskite powders at room temperature by the anti-solvent-assisted crystallization method. Although, mixed halide CH3NH3PbBr3−xClx perovskites have been prepared by different methods, however, to the best of our knowledge the anti-solvent-assisted crystallization method is employed here for the first time to prepare mixed halide CH3NH3PbBr3−xClx perovskite powders. Solution-processed methyl ammonium lead tribromide CH3NH3PbBr3 (x = 0) and different amounts of chloride (Cl) containing mixed halide perovskites (CH3NH3PbBr3−xClx) were prepared for compositions of x = 0.5, 1, 1.25, 1.75. It reveals that bulk CH3NH3PbBr3−xClx samples are highly crystalline and exists in pure single cubic phase with an increased tolerance factor as compared to pure CH3NH3PbBr3. The CH3NH3PbBr3 perovskite has space-group Pm-3 m and a cell parameter of 5.930 Å (volume = 206 Å). The synthesis route adopted here gives access to hybrid perovskites powders with high Cl content and hence enables the band gap to be precisely tuned over a range from 2.26 to 2.49 eV. The powder samples display the subtle shifts in the emission spectra and the photoluminescence kinetics exhibits a decrease in average lifetime by increasing the Cl contents due to the presence of trap states in the structures that encourage non-radiative recombination of charge carrier. Conventionally, the CH3NH3PbBr3-based inverted solar cell architecture is prepared via mixing of the CH3NH3Br and PbBr2 precursors. In contrast, herein, the precursor solutions are directly prepared from the CH3NH3PbBr3 powder and the active layer of the inverted perovskite solar cells are then spin coated using this solution. The high Voc value of the fabricated solar cells potentially makes it a promising candidate for tandem photovoltaic, photocatalytic water splitting, and semi-transparent photovoltaic applications.PostprintPostprintPeer reviewe

    Satb1 overexpression drives tumor-promoting activities in cancer-associated dendritic cells

    Get PDF
    Special AT-rich sequence-binding protein 1 (Satb1) governs genome-wide transcriptional programs. Using a conditional knockout mouse, we find that Satb1 is required for normal differentiation of conventional dendritic cells (DCs). Furthermore, Satb1 governs the differentiation of inflammatory DCs by regulating major histocompatibility complex class II (MHC II) expression through Notch1 signaling. Mechanistically, Satb1 binds to the Notch1 promoter, activating Notch expression and driving RBPJ occupancy of the H2-Ab1 promoter, which activates MHC II transcription. However, tumor-driven, unremitting expression of Satb1 in activated Zbtb46(+) inflammatory DCs that infiltrate ovarian tumors results in an immunosuppressive phenotype characterized by increased secretion of tumor-promoting Galectin-1 and IL-6. In vivo silencing of Satb1 in tumor-associated DCs reverses their tumorigenic activity and boosts protective immunity. Therefore, dynamic fluctuations in Satb1 expression govern the generation and immunostimulatory activity of steady-state and inflammatory DCs, but continuous Satb1 overexpression in differentiated DCs converts them into tolerogenic/pro-inflammatory cells that contribute to malignant progression.Fil: Tesone, Amelia J.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Rutkowski, Melanie R.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Brencicova, Eva. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Svoronos, Nikolaos. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Perales Puchal, Alfredo. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Stephen, Tom L.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Allegrezza, Michael J.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Payne, Kyle K.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Nguyen, Jenny M.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Wickramasinghe, Jayamanna. The Wistar Institute. Center for Systems and Computational Biology; Estados UnidosFil: Tchou, Julia. University of Pennsylvania; Estados UnidosFil: Borowsky, Mark E.. Christiana Care Health System. Helen F. Graham Cancer Center; Estados UnidosFil: Rabinovich, Gabriel Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Kossenkov, Andrew V.. The Wistar Institute. Center for Systems and Computational Biology; Estados UnidosFil: Conejo Garcia, José R.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados Unido

    Time-resolved in-situ X-ray diffraction study of CaO and CaO:Ca3Al2O6 composite catalysts for biodiesel production

    Get PDF
    The authors would like to acknowledge Innovate UK (Project Nos. 103498 and 106037) and EPSRC (EP/K015540/1 and EP/P007821/1) for funding. This work was carried out with the support of the Diamond Light Source, instrument I12 (proposal EE20820).Alternative and sustainable waste sources are receiving increasing attention as they can be used to produce biofuels with a low carbon footprint. Waste fish oil is one such example and can be considered an abundant and sustainable waste source to produce biodiesel. Ultimately this could lead to fishing communities having their own "off-grid" source of fuel for boats and vehicles. At the industrial level biodiesel is currently produced by homogeneous catalysis because of the high catalyst activity and selectivity. In contrast, heterogeneous catalysis offers several advantages such as improved reusability, reduced waste and lower processing costs. Here we investigate the phase evolution of two heterogeneous catalysts, CaO and a Ca3Al2O6:CaO ('C3A:CaO') composite, under in-situ conditions for biodiesel production from fish oil. A new reactor was designed to monitor the evolution of the crystalline catalyst during the reaction using synchrotron powder X-ray diffraction (PXRD). The amount of calcium diglyceroxide (CaDG) began to increase rapidly after approximately 30 minutes, for both catalysts. This rapid increase in CaDG could be linked to ex-situ NMR studies which showed that the conversion of fish oil to biodiesel rapidly increased after 30 minutes. The key to the difference in activity of the two catalysts appears to be that the Ca3Al2O6:CaO composite maintains a high rate of calcium diglyceroxide formation for longer than CaO, although the initial formation rates and reaction kinetics are similar. Overall this specialised in-situ set-up has been shown to be suitable to monitor the phase evolution of heterogeneous crystalline catalysts during the triglycerides transesterification reaction, offering the opportunity to correlate the crystalline phases to activity, deactivation and stability.Publisher PDFPeer reviewe

    Role of lattice distortion and A site cation in the phase transitions of methylammonium lead halide perovskites

    Get PDF
    The rapid increase in power conversion efficiencies of photovoltaic devices incorporating lead halide perovskites has resulted in intense interest in the cause of their excellent properties. In the present paper, resonant ultrasound spectroscopy has been used to determine the elastic and anelastic properties of CH3NH3PbX3(where X=Cl, Br, or I) and CD3ND3PbI3 perovskites in the 5–380 K temperature range. This is coupled with differential scanning calorimetry, variable temperature neutron powder diffraction, and variable temperature photoluminescence studies to provide insights into the underlying processes and structural instabilities in the crystal structure. By comparing measurements on CH3NH3PbI3 with the deuterated equivalent, it has been possible to distinguish processes which are related to the hydrogen bonding between the methylammonium cation and the perovskite framework. We observe that replacing hydrogen with deuterium has a significant impact on both the elastic and photophysical properties, which shows that hydrogen bonding plays a crucial role in the material performance. Temperature-dependent photoluminescence studies show that the light emission is unaffected by the tetragonal-orthorhombic phase transition, but a blueshift in the emission and a steep increase in photoluminescence quantum yield are seen at temperatures below 150 K. Finally, observations of peaks in acoustic loss occurring in CH3NH3PbCl3 have revealed freezing processes in the vicinity of ∼150−170K, with activation energies in the range of 300 to 650 meV. These processes are attributed to freezing of the motion of methylammonium cations, and could explain the changes in photoluminescence seen in CH3NH3PbI3 at the same temperature. © 2018 American Physical Society. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at: https://doi.org/10.1103/PhysRevMaterials.2.06540

    In situ thermal battery discharge using CoS2 as a cathode material

    Get PDF
    Authors thank AWE and the EPSRC (EP/K015540/1) for funding. JTSI acknowledges a Royal Society Wolfson Research Merit award. We thank the STFC for beam-time.Thermal batteries are an established primary battery technology and the most commonly used cathodes in these batteries are transition metal disulfides MS2 (where M = Co, Ni and Fe). However, understanding the evolution of crystalline phases upon battery discharge has been hindered due to the high temperature operation of these batteries. Here we report an experiment that simultaneously collects powder neutron diffraction and electrochemical data as the battery is discharged. Four regions are observed in the diffraction data and four different cobalt containing phases are observed. Multi-phase Rietveld refinement has been used to monitor the evolution of phases during discharge and this is linked to the battery discharge profile. A new discharge mechanism has been proposed which involves hexagonal CoS instead of Co3S4, and the increase in unit cell parameters on discharge suggests the formation of a sulfur deficient solid solution before transformation to Co9S8. This behavior seems reminiscent of that of NiS2 suggesting that the discharge mechanisms of transition metal disulfides may have more similarities than originally thought.Publisher PDFPeer reviewe
    • …
    corecore