1,162 research outputs found

    TECHNICAL CHANGE AND NEW DIRECTIONS FOR COTTON PRODUCTION

    Get PDF
    This report summarizes a year-long study of the current and future role of technology in the Mid-South, Southeast, and High Plains cotton production systems. Specific research objectives were to: 1) Identify the impacts of emerging technology on regional cotton production systems, including the implications of technology adoption on the economic and environmental stability of the system; 2) Examine the future direction of technical change in cotton production and its implications for the biological and economic structure of the cotton production system; and 3) Determine the potential role of future technologies on shifting regional competitiveness in cotton production. Information used in the analysis was collected through a series of consultations with leading cotton research and extension personnel at regional research facilities and land grant universities. Given the verbal, descriptive nature of the information collected, the analysis represents the expert opinions of individuals working with and in the cotton production industry. In short, this report documents the combined vision of cotton production scientists and extension personnel with respect to the future of U.S. and regional cotton production. Necessary background information was obtained from published academic, industry, and government sources.Production Economics, Research and Development/Tech Change/Emerging Technologies,

    Technical Change and New Directions for Cotton Production (Bulletin #861)

    Get PDF
    This report summarizes a year-long study of the current and future role of technology in the Mid-South, Southeast and High Plains cotton production systems. In short, this report documents the combined vision of cotton production scientists and extension personnel with respect to the future of U.S. and regional cotton production.https://digitalcommons.lsu.edu/agcenter_bulletins/1043/thumbnail.jp

    Electronic structure and total energy of interstitial hydrogen in iron: Tight binding models

    Get PDF
    An application of the tight binding approximation is presented for the description of electronic structure and interatomic force in magnetic iron, both pure and containing hydrogen impurities. We assess the simple canonical d-band description in comparison to a non orthogonal model including s and d bands. The transferability of our models is tested against known properties including the segregation energies of hydrogen to vacancies and to surfaces of iron. In many cases agreement is remarkably good, opening up the way to quantum mechanical atomistic simulation of the effects of hydrogen on mechanical properties

    Application of a theory and simulation-based convective boundary mixing model for AGB star evolution and nucleosynthesis

    Get PDF
    The s-process nucleosynthesis in Asymptotic giant branch (AGB) stars depends on the modeling of convective boundaries. We present models and s-process simulations that adopt a treatment of convective boundaries based on the results of hydrodynamic simulations and on the theory of mixing due to gravity waves in the vicinity of convective boundaries. Hydrodynamics simulations suggest the presence of convective boundary mixing (CBM) at the bottom of the thermal pulse-driven convective zone. Similarly, convection-induced mixing processes are proposed for the mixing below the convective envelope during third dredge-up (TDU), where the ¹³C pocket for the s process in AGB stars forms. In this work, we apply a CBM model motivated by simulations and theory to models with initial mass M=2 and M = 3 Mʘ, and with initial metal content Z = 0.01 and Z = 0.02. As reported previously, the He-intershell abundances of ¹²C and ¹⁶O are increased by CBM at the bottom of the pulse-driven convection zone. This mixing is affecting the ²²Ne(α, n)²⁵Mg activation and the s-process efficiency in the ¹³C-pocket. In our model, CBM at the bottom of the convective envelope during the TDU represents gravity wave mixing. Furthermore, we take into account the fact that hydrodynamic simulations indicate a declining mixing efficiency that is already about a pressure scale height from the convective boundaries, compared to mixing-length theory. We obtain the formation of the ¹³C-pocket with a mass of ≈10⁻⁴ Mʘ. The final s-process abundances are characterized by 0.36 < [s Fe] < 0.78 and the heavy-to-light s-process ratio is -0.23 < [hs ls] < 0.45. Finally, we compare our results with stellar observations, presolar grain measurements and previous work

    Star Formation Histories of the LEGUS Dwarf Galaxies (I): recent History of NGC1705, NGC4449 and Holmberg II

    Get PDF
    We use HST observations from the Legacy Extragalactic UV Survey to reconstruct the recent star formation histories (SFHs) of three actively star-forming dwarf galaxies, NGC4449, Holmberg II and NGC1705, from their UV color-magnitude diagrams (CMDs). We apply a CMD fitting technique using two independent sets of stellar isochrones, PARSEC-COLIBRI and MIST, to assess the uncertainties related to stellar evolution modelling. Irrespective of the adopted stellar models, all the three dwarfs are found to have had almost constant star formation rates (SFRs) in the last 100-200 Myr, with modest enhancements (a factor of \sim2) above the 100 Myr-averaged-SFR. Significant differences among the three dwarfs are found in the overall SFR, the timing of the most recent peak and the SFR//area. The Initial Mass Function (IMF) of NGC1705 and Holmberg II is consistent with a Salpeter slope down to \approx 5 M_{\odot}, whereas it is slightly flatter, s=2.0=-2.0, in NGC4449. The SFHs derived with the two different sets of stellar models are consistent with each other, except for some quantitative details, attributable to their input assumptions. They also share the drawback that all synthetic diagrams predict a clear separation in color between upper main sequence and helium burning stars, which is not apparent in the data. Since differential reddening, significant in NGC4449, or unresolved binaries don't appear to be sufficient to fill the gap, we suggest this calls for a revision of both sets of stellar evolutionary tracks.Comment: 22 pages, 17 figures, accepted for publication on Ap

    Relative energetics and structural properties of zirconia using a self-consistent tight-binding model

    Full text link
    We describe an empirical, self-consistent, orthogonal tight-binding model for zirconia, which allows for the polarizability of the anions at dipole and quadrupole levels and for crystal field splitting of the cation d orbitals. This is achieved by mixing the orbitals of different symmetry on a site with coupling coefficients driven by the Coulomb potentials up to octapole level. The additional forces on atoms due to the self-consistency and polarizabilities are exactly obtained by straightforward electrostatics, by analogy with the Hellmann-Feynman theorem as applied in first-principles calculations. The model correctly orders the zero temperature energies of all zirconia polymorphs. The Zr-O matrix elements of the Hamiltonian, which measure covalency, make a greater contribution than the polarizability to the energy differences between phases. Results for elastic constants of the cubic and tetragonal phases and phonon frequencies of the cubic phase are also presented and compared with some experimental data and first-principles calculations. We suggest that the model will be useful for studying finite temperature effects by means of molecular dynamics.Comment: to be published in Physical Review B (1 march 2000

    Combined Effects of Rotation and Age Spreads on Extended Main-Sequence Turn Offs

    Get PDF
    The extended main-sequence turn offs (eMSTOs) of several young to intermediate age clusters are examined in the Magellanic Clouds and the Milky Way. We explore the effects of extended star formation (eSF) and a range of stellar rotation rates on the behavior of the color–magnitude diagram, paying particular attention to the MSTO. We create synthetic stellar populations based on MESA stellar models to simulate observed Hubble Space Telescope and Gaia star cluster data. We model the effect of rotation as a nonparametric distribution, allowing for maximum flexibility. In our models the slow rotators comprise the blueward, and fast rotators the redward portion of the eMSTO. We simulate data under three scenarios: nonrotating eSF, a range of rotation rates with a single age, and a combination of age and rotation effects. We find that two of the five clusters (the youngest and oldest) favor an age spread, but these also achieve the overall worst fits of all clusters. The other three clusters show comparable statistical evidence between rotation and an age spread. In all five cases, a rotation-rate distribution alone is capable of qualitatively matching the observed eMSTO structure. In future work, we aim to compare our predicted VsiniV\sin i with observations in order to better constrain the physics related to stellar rotation
    corecore