2,052 research outputs found

    The Two-exponential Liouville Theory and the Uniqueness of the Three-point Function

    Get PDF
    It is shown that in the two-exponential version of Liouville theory the coefficients of the three-point functions of vertex operators can be determined uniquely using the translational invariance of the path integral measure and the self-consistency of the two-point functions. The result agrees with that obtained using conformal bootstrap methods. Reflection symmetry and a previously conjectured relationship between the dimensional parameters of the theory and the overall scale are derived.Comment: Plain TeX File; 15 Page

    Uniqueness of infrared asymptotics in Landau gauge Yang-Mills theory II

    Full text link
    We present a shortened and simplified version of our proof \cite{Fischer:2006vf} of the uniqueness of the scaling solution for the infrared asymptotics of Green functions in Landau gauge Yang-Mills theory. The simplification relates to a new RG-invariant arrangement of Green functions applicable to general theories. As before the proof relies on the necessary consistency between Dyson-Schwinger equations (DSEs) and functional renormalisation group equations (FRGs). We also demonstrate the existence of a specific scaling solution for both, DSEs and FRGs, that displays uniform and soft kinematic singularities.Comment: 12 pages, 10 figure

    Real-time effective-action approach to the Anderson quantum dot

    Full text link
    The non-equilibrium time evolution of an Anderson quantum dot is investigated. The quantum dot is coupled between two leads forming a chemical-potential gradient. We use Kadanoff-Baym dynamic equations within a non-perturbative resummation of the s-channel bubble chains. The effect of the resummation leads to the introduction of a frequency-dependent 4-point vertex. The tunneling to the leads is taken into account exactly. The method allows the determination of the transient as well as stationary transport through the quantum dot, and results are compared with different schemes discussed in the literature (fRG, ISPI, tDMRG and QMC).Comment: 12 pages, 13 figure

    Shuttle payload S-band communications system

    Get PDF
    The Shuttle payload S-band communications system design, operational capabilities, and performance are described in detail. System design requirements, overall system and configuration and operation, and laboratory/flight test results are presented. Payload communications requirements development is discussed in terms of evolvement of requirements as well as the resulting technical challenges encountered in meeting the initial requirements. Initial design approaches are described along with cost-saving initiatives that subsequently had to be made. The resulting system implementation that was finally adopted is presented along with a functional description of the system operation. A description of system test results, problems encountered, how the problems were solved, and the system flight experience to date is presented. Finally, a summary of the advancements made and the lessons learned is discussed

    Signatures of confinement in Landau gauge QCD

    Get PDF
    We summarise an analysis of the infrared regime of Landau gauge QCD by means of a flow equation approach. The infrared behaviour of gluon and ghost propagators is evaluated. The results provide further evidence for the Kugo-Ojima confinement scenario. We also discuss their relation to results obtained with other functional methods as well as the lattice.Comment: 3 pages, talk given by JMP at 6th Conference on Quark Confinement and the Hadron Spectrum, Villasimius, Sardinia, Italy, 21-25 Sep 200

    Infection Mechanisms and Colonization Patterns of Fungi Associated with Soybean

    Get PDF
    Fungi have many kinds of unique associations with plants. These associations can benefit both the fungus and the plant, or can be detrimental to the plants and cause disease and even plant death. Land plants evolved over 425 million years ago, and fungi have been associated with their evolutionary development over the millennia. In reference to nutrient sequestration, fungal associations with plants are characterized as biotrophic, necrotrophic, or a mixture of these types. Biotrophs usually grow only on living plant tissue extracting nutrients from living plant cells. They can be pathogenic or symbiotic. In a symbiotic relationship, fungi gain carbon from the plant in exchange for nutrients and water unattainable by the plant. Necrotrophs promote host cell death to acquire nutrients for growth and reproduction. Each type of association is equipped with its own unique collection of biochemical and mechanical infection and colonization mechanisms. In turn, plants have evolved to have a complex network of genes to interact with a broad range of fungi. This chapter will provide an overview of three different types of fungal infection and colonization patterns with examples relevant to soybean as well as define defense mechanisms that the plant uses to interact with these microbes

    Duality in Quantum Liouville Theory

    Get PDF
    The quantisation of the two-dimensional Liouville field theory is investigated using the path integral, on the sphere, in the large radius limit. The general form of the NN-point functions of vertex operators is found and the three-point function is derived explicitly. In previous work it was inferred that the three-point function should possess a two-dimensional lattice of poles in the parameter space (as opposed to a one-dimensional lattice one would expect from the standard Liouville potential). Here we argue that the two-dimensionality of the lattice has its origin in the duality of the quantum mechanical Liouville states and we incorporate this duality into the path integral by using a two-exponential potential. Contrary to what one might expect, this does not violate conformal invariance; and has the great advantage of producing the two-dimensional lattice in a natural way.Comment: Plain TeX File; 36 page

    Sarma phase in relativistic and non-relativistic systems

    Get PDF
    We investigate the stability of the Sarma phase in two-component fermion systems in three spatial dimensions. For this purpose we compare strongly-correlated systems with either relativistic or non-relativistic dispersion relation: relativistic quarks and mesons at finite isospin density and spin-imbalanced ultracold Fermi gases. Using a Functional Renormalization Group approach, we resolve fluctuation effects onto the corresponding phase diagrams beyond the mean-field approximation. We find that fluctuations induce a second order phase transition at zero temperature, and thus a Sarma phase, in the relativistic setup for large isospin chemical potential. This motivates the investigation of the cold atoms setup with comparable mean-field phase structure, where the Sarma phase could then be realized in experiment. However, for the non-relativistic system we find the stability region of the Sarma phase to be smaller than the one predicted from mean-field theory. It is limited to the BEC side of the phase diagram, and the unitary Fermi gas does not support a Sarma phase at zero temperature. Finally, we propose an ultracold quantum gas with four fermion species that has a good chance to realize a zero-temperature Sarma phase.Comment: version published in Phys.Lett.B; 10 pages, 5 figure

    Gestational dating by metabolic profile at birth: a California cohort study.

    Get PDF
    BackgroundAccurate gestational dating is a critical component of obstetric and newborn care. In the absence of early ultrasound, many clinicians rely on less accurate measures, such as last menstrual period or symphysis-fundal height during pregnancy, or Dubowitz scoring or the Ballard (or New Ballard) method at birth. These measures often underestimate or overestimate gestational age and can lead to misclassification of babies as born preterm, which has both short- and long-term clinical care and public health implications.ObjectiveWe sought to evaluate whether metabolic markers in newborns measured as part of routine screening for treatable inborn errors of metabolism can be used to develop a population-level metabolic gestational dating algorithm that is robust despite intrauterine growth restriction and can be used when fetal ultrasound dating is not available. We focused specifically on the ability of these markers to differentiate preterm births (PTBs) (<37 weeks) from term births and to assign a specific gestational age in the PTB group.Study designWe evaluated a cohort of 729,503 singleton newborns with a California birth in 2005 through 2011 who had routine newborn metabolic screening and fetal ultrasound dating at 11-20 weeks' gestation. Using training and testing subsets (divided in a ratio of 3:1) we evaluated the association among PTB, target newborn characteristics, acylcarnitines, amino acids, thyroid-stimulating hormone, 17-hydroxyprogesterone, and galactose-1-phosphate-uridyl-transferase. We used multivariate backward stepwise regression to test for associations and linear discriminate analyses to create a linear function for PTB and to assign a specific week of gestation. We used sensitivity, specificity, and positive predictive value to evaluate the performance of linear functions.ResultsAlong with birthweight and infant age at test, we included 35 of the 51 metabolic markers measured in the final multivariate model comparing PTBs and term births. Using a linear discriminate analyses-derived linear function, we were able to sort PTBs and term births accurately with sensitivities and specificities of ≄95% in both the training and testing subsets. Assignment of a specific week of gestation in those identified as PTBs resulted in the correct assignment of week ±2 weeks in 89.8% of all newborns in the training and 91.7% of those in the testing subset. When PTB rates were modeled using the metabolic dating algorithm compared to fetal ultrasound, PTB rates were 7.15% vs 6.11% in the training subset and 7.31% vs 6.25% in the testing subset.ConclusionWhen considered in combination with birthweight and hours of age at test, metabolic profile evaluated within 8 days of birth appears to be a useful measure of PTB and, among those born preterm, of specific week of gestation ±2 weeks. Dating by metabolic profile may be useful in instances where there is no fetal ultrasound due to lack of availability or late entry into care
    • 

    corecore