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We investigate the stability of the Sarma phase in two-component fermion systems in three spatial 
dimensions. For this purpose we compare strongly-correlated systems with either relativistic or non-
relativistic dispersion relation: relativistic quarks and mesons at finite isospin density and spin-
imbalanced ultracold Fermi gases. Using a Functional Renormalization Group approach, we resolve 
fluctuation effects onto the corresponding phase diagrams beyond the mean-field approximation. We 
find that fluctuations induce a second-order phase transition at zero temperature, and thus a Sarma 
phase, in the relativistic setup for large isospin chemical potential. This motivates the investigation of 
the cold atoms setup with comparable mean-field phase structure, where the Sarma phase could then 
be realized in experiment. However, for the non-relativistic system we find the stability region of the 
Sarma phase to be smaller than the one predicted from mean-field theory. It is limited to the BEC side 
of the phase diagram, and the unitary Fermi gas does not support a Sarma phase at zero temperature. 
Finally, we propose an ultracold quantum gas with four fermion species that has a good chance to realize 
a zero-temperature Sarma phase.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Understanding the pairing mechanisms in fermionic many-body 
systems is a key step towards bridging the gap between micro-
scopic models and macroscopic phenomena. A particularly inter-
esting question concerns the stability of superfluidity in the pres-
ence of mismatching Fermi surfaces. Such an asymmetry between 
the pairing partners is realized in electronic materials in an ex-
ternal magnetic field [1–5], and is expected to be found in neu-
tron stars [6–11]. With ultracold atoms this situation can easily 
be simulated by introducing a population imbalance between dif-
ferent hyperfine states. In a relativistic, QCD-related setting, non-
vanishing isospin chemical potential similarly introduces an im-
balance between different quark flavors, up and down. Alterna-
tively, we may consider the relativistic isospin chemical potential 
as maintaining a balance between up and anti-down quarks with 
pairing in a superfluid pion condensate. The pair-breaking popu-
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lation imbalance is then introduced by the symmetric quark or 
baryon chemical potential.

While it is not possible to study, for example, the pairing mech-
anisms in neutron stars in table-top experiments, the high experi-
mental control and accessibility of ultracold quantum gases makes 
them ideal setups to shed new light on superfluidity and its break-
down [12–16]. In particular, preparations of the spin-imbalanced 
BCS-BEC crossover allow the tuning of system parameters almost 
at will [17–23]. It is then interesting to study whether there is a 
parameter regime of the non-relativistic model that corresponds 
to a system relevant for nuclear or possible quark matter at high 
densities. Apart from the physical similarities of these systems, 
a positive answer to this question is expected based on the ob-
servation that the mean-field phase diagrams in both cases look 
strikingly similar. To reach a conclusive statement, however, fluc-
tuations beyond the mean-field approximation need to be taken 
into account, which is the aim of the present work.

In connection with the breakdown of superfluidity, the possi-
ble existence of a so-called Sarma phase [3] has gained a lot of 
interest recently [24–41]. The Sarma phase is a homogeneous su-
perfluid phase with gapless fermionic excitations. To understand 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. The two lowest branches of the dispersion relation, Eq. (1), relevant to the 
Sarma transition. Increasing the imbalance δμ, the lowest branch extends below 
zero, yielding gapless excitations around the Fermi surfaces at the corresponding 
momenta pmin and pmax. Note that for minp εp > 0 the minimal εpmin can become 
negative, and the Sarma phase appears with only one Fermi surface in this case.

its origin we consider a gas of two species of fermions, labelled by 
an effective “spin” 1 and 2, with a chemical potential imbalance 
δμ = (μ1 −μ2)/2 ≥ 0 between them. After including renormaliza-
tion effects on the propagator of fermionic quasiparticles, we can 
infer their dispersion relation from the quadratic part of the spin-
imbalanced effective Lagrangian. It typically splits into two lowest 
branches given by

E(±)
p =

√
ε2

p + Δ2 ± δμ, (1)

where εp is the microscopic dispersion relation of particles, and Δ
is the pairing gap.

A Sarma phase is characterized by a non-vanishing gap Δ and 
the parameters in Eq. (1) are tuned so that the lower branch be-
comes negative in a momentum interval pmin < p < pmax, see 
Fig. 1. Accordingly, this interval becomes occupied even at zero 
temperature, and we find gapless excitations around the built-up 
Fermi surfaces at pmin and pmax. For the remaining momenta, 
fermionic excitations are gapped. For non-zero temperature the 
Fermi surfaces are smeared out and a sharp distinction between 
the unpolarized superfluid and the Sarma phase is not possible. 
Hence, we speak of a Sarma crossover in this case. The Sarma 
phase, or special cases of it, is also referred to as interior gap 
superfluid, breached pair phase, or magnetized superfluid in the 
literature.

The criterion for a zero crossing of the lower branch in Eq. (1), 
and thus for the onset of the Sarma phase, is equivalent to

δμ > min
p

√
ε2

p + Δ2. (2)

We emphasize again that this equation is understood in terms 
of renormalized single-particle quantities. Assuming for simplic-
ity that minp εp = 0, we then arrive at the condition δμ > Δ. 
Then there are three possible scenarios for a spin-imbalanced sys-
tem with Δ > 0, which decide over the fate of the Sarma phase. 
By increasing δμ, we make pairing less favorable, and superflu-
idity generically breaks down at a critical imbalance δμc. If this 
happens continuously, i.e. by means of a second-order phase tran-
sition, the Sarma criterion is necessarily fulfilled somewhere, since 
Δ → 0 (scenario I). This is depicted by the blue, dot-dashed line in 
Fig. 2. At a first-order phase transition, on the other hand, the gap 
jumps from a critical value Δc > 0 to zero. For δμc > Δc a Sarma 
phase exists (scenario II; red, dashed line in Fig. 2), whereas the 
required condition cannot be fulfilled for δμc < Δc (scenario III; 
green, solid line). We see that the existence of a Sarma phase at a 
second-order transition line is a universal feature, whereas it be-
comes non-universal in the vicinity of a first-order transition line.
Fig. 2. The three possible scenarios for the Sarma condition Δ = δμ; see discussion 
below Eq. (2) for details. In the case of a second-order superfluid phase transition 
the criterion is always fulfilled for some δμ (Scenario I), whereas the size of the 
critical gap at a first-order transition decides whether it is fulfilled (Scenario II) or 
not (Scenario III).

In experiments with ultracold atoms the Sarma phase can be 
inferred from a non-monotonous or non-continuous momentum 
distribution after time-of-flight expansion [41]. At non-zero tem-
perature, the sharp features in the momentum distribution are 
smeared out. The Sarma phase also shows up in shell-structured 
in-situ density images, where the polarized superfluid manifests it-
self in a population imbalance between the spin species [31]: If the 
transition to the normal gas is of first order, an intermediate pop-
ulation imbalanced superfluid region in the cloud which smoothly 
connects to the balanced superfluid, indicates the Sarma phase. If 
the transition is of second order, the superfluidity of the popula-
tion imbalanced region can be probed by the excitation of vortices. 
The presence of Fermi surfaces is also expected to induce metal-
lic features in the superfluid, which are observable in its transport 
properties. This makes the system an unconventional superfluid. 
The transport properties of neutron stars are known to be closely 
linked to their constitution and life time. A possible Sarma phase 
is thus of relevance for interpreting the stellar evolution.

As discussed above, the two systems studied in the following 
look very similar at first glance and indeed it is found that their 
mean-field phase diagrams agree qualitatively. Upon closer inspec-
tion, however, especially the bosonic sectors of the two theories 
differ. Fluctuation contributions from this sector are not accounted 
for in a mean-field approximation, but may lead to strong modifi-
cations of the phase diagram. Notably, the relativistic system shows 
a richer phase structure, including a Sarma phase at low tem-
perature once fluctuations are taken into account, see Section 2. 
One can then ask whether this is also true in the non-relativistic 
setting, where such additional phases are potentially accessible in 
experiment.

To study spin-imbalanced systems beyond the mean-field ap-
proximation, we employ the Functional Renormalization Group 
(FRG), which enables the systematic inclusion of fluctuations. In 
particular, it naturally incorporates the feedback of order parame-
ter fluctuations onto the full effective potential. As a consequence, 
physical observables show the correct beyond mean-field scaling 
at second-order phase transitions. Additionally, the FRG is free of 
the sign problem, which hampers Quantum Monte Carlo stud-
ies of spin-imbalanced systems [42]. Hence, the full phase dia-
grams of both the spin-imbalanced non-relativistic and the isospin-
asymmetric relativistic system are accessible. For extensive reviews 
on the method see Refs. [43–50]. Comprehensive introductions to 
the FRG approach for QCD-like models and the BCS-BEC crossover, 
respectively, can be found in Refs. [51,52] and [53,54].

To highlight the impact of bosonic fluctuations, we compare re-
sults in the mean-field approximation to those obtained with the 
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FRG. In many cases, mean-field theory predicts a first-order break-
down of superfluidity due to spin-imbalance at T = 0. Including 
fluctuations, this first-order transition can turn into a continu-
ous one. This interesting effect has indeed been found in FRG 
studies of two-dimensional Hertz–Millis type actions [55], and a 
non-relativistic spin-imbalanced Fermi gas on the BCS-side of the 
crossover in two spatial dimensions [56]. In the present analysis 
we find such a smoothing of the transition in the relativistic model, 
whereas it is absent in the non-relativistic setting.

This paper is organized as follows. In Section 2 we consider 
the relativistic system, where bosonic fluctuations induce a Sarma 
phase close to the breakdown of charged pion condensation at zero 
temperature. We then consider the non-relativistic analog in Sec-
tion 3. After discussing our approximation we investigate the sta-
bility of the Sarma phase in the unitary Fermi gas at zero and finite 
temperature, and then turn to the imbalanced BCS-BEC crossover 
at zero temperature. We draw our conclusions in Section 4.

2. Relativistic system

In this section we investigate the fate of the Sarma phase in a 
relativistic system. To this end, we employ a quark–meson model, 
which is frequently used as a low-energy effective model for QCD, 
with quarks and mesons as effective degrees of freedom [57–62]. 
Here we introduce both a finite quark, μq , and isospin, μI , chem-
ical potential. The quark chemical potential, defined as one third 
of the baryon chemical potential, induces an imbalance between 
quarks and anti-quarks. In contrast, the isospin chemical potential 
induces an imbalance between the quark flavors, up and down. 
Similar to the non-relativistic case discussed in Section 3, this 
setup allows to study the impact of mismatched Fermi spheres on 
fermion pairing. In fact, at low temperature and finite densities, 
the system describes a superfluid in the BCS-BEC crossover [63], 
similar to the non-relativistic case discussed below: At moderately 
large |μI | > mπ/2 charged pions condense and form a Bose con-
densate. The ground state then is a superfluid of pions. In the limit 
of large |μI |, on the other hand, Cooper-pairing between quarks 
and antiquarks sets in. Also in this case the relevant channel car-
ries the quantum numbers of a pion. Hence we expect a smooth 
crossover from BEC- to BCS-like pairing as μI is increased.

Moreover, the case of a pure isospin chemical potential, i.e. 
vanishing quark chemical potential, is one example for a QCD-
like theory without a fermion sign problem. The latter represents 
the main obstacle for studying the phase diagram of QCD at finite 
quark chemical potential using Lattice Monte Carlo methods [64]. 
However, the situation of both, a finite quark and finite isospin 
chemical potential, is also of direct physical interest in the context 
of heavy ion collisions or quark matter inside neutron stars.

The omission of a possible diquark condensate and the absence 
of baryonic degrees of freedom constitute natural limitations of the 
capability of this model to describe QCD at high densities. Here, 
however, we are mainly interested in the similarities of this rel-
ativistic model with its non-relativistic counterpart discussed be-
low. Hence, such QCD-related limitations are of no concern for the 
present work.

The model is described by a Lagrangian of the form [65]

L = ψ̄
(
/∂ + g

(
σ + iγ 5 �π �τ ) − γ0μq − γ0τ3μI

)
ψ

+ 1

2
(∂νσ )2 + 1

2
(∂νπ0)

2 + U (χ,ρ) − cσ

+ 1

2

(
∂ν + 2μIδ

0
ν

)
π+

(
∂ν − 2μIδ

0
ν

)
π−, (3)

where τi denote Pauli matrices in flavor space and we define in-
variants χ ≡ σ 2 + π2 (with π0 ≡ π3), ρ ≡ π+π− (with π± =
0
π1 ± iπ2) and ψ = (ψu, ψd)
T . The four (real) bosonic degrees 

of freedom are given by the isospin-singlet (σ ) and -triplet ( �π ), 
which combine to a four-component (2, 2) representation of the 
chiral SU(2)L × SU(2)R symmetry of the theory.

At finite isospin chemical potential the effective potential in 
general is a function of both invariants χ and ρ . Its minimum 
(χ0, ρ0) determines the phase structure of the system, where a 
finite value of χ0 = 〈χ 〉 signals broken chiral symmetry and a 
finite value of ρ0 = 〈ρ〉 signals a phase of charged pion conden-
sation. This value can then be used to define the gap parameter 
as Δ2 ≡ g2ρ0. The following analysis focuses on the charged pion 
condensation phase and its disappearance with increasing quark 
chemical potential.

Within the framework of the FRG we investigate the model 
Eq. (3) in the local potential approximation (LPA), where only a 
scale-dependent effective potential is considered. However, the full 
field dependence of the effective potential is taken into account 
by expanding it on a two-dimensional grid in field space [66]. For 
a comprehensive description of the phase structure of this model 
as a function of the three external parameters (T , μq, μI ) as ob-
tained with the FRG, as well as for a more detailed description 
of the truncation and implementation, we refer the reader to [65]. 
Here we only briefly recapitulate the features most relevant for the 
present investigation.

For sufficiently large isospin chemical potential and sufficiently 
small quark chemical potential there is a phase of charged pion 
condensation. At zero temperature the phase diagram is strongly 
constrained by the Silver Blaze property [65,67], which prohibits 
a dependence of the partition function on the chemical potential 
until the latter exceeds the mass of the lowest excitation it cou-
ples to. At vanishing quark chemical potential for example, this 
entails that the onset of pion condensation is found at μI = mπ/2. 
At fixed μI > mπ/2 with increasing quark chemical potential μq

the charged pion condensation phase finally breaks down. Inter-
estingly, for μI > 0.79mπ the full calculation including bosonic 
fluctuations shows an additional first-order transition at small and 
vanishing temperatures inside the pion condensation phase close 
to its phase boundary [65].

One possible interpretation for this transition is a first-order 
transition to a Sarma phase, corresponding to scenario II in Fig. 2, 
and hence the existence of a stable Sarma phase at vanishing tem-
perature. As outlined above, the definition of the Sarma phase 
relies on the notion of quasiparticle dispersion relations, which, 
for the Lagrangian given in Eq. (3), take the form

εp =
√

�p2 + m2
ψ − μI , (4)

where m2
ψ = g2χ . For μI > mψ we have minp εp = 0 [65,68], and 

the criterion for the stability of the Sarma phase, Eq. (2), reduces 
to Δ < μq . In particular, this is true in the case of restored chiral 
symmetry. To investigate the appearance of a Sarma phase in more 
detail, we study slices of the three-dimensional phase diagram at 
a fixed value of μI = mπ . As remarked above, for this value a 
first-order transition inside the pion condensation occurs upon in-
creasing μq . Estimating the location of the BCS-BEC crossover via 
the simple criterion of the zero-crossing of minp εp , i.e. μI = mψ , 
translates into a value of 0.82mπ . Hence the choice μI = mπ cor-
responds to a point just on the BCS-side of the crossover.

The corresponding (μI − T )-phase diagrams are shown in Fig. 3, 
where the left panel shows the outcome of a mean-field calcula-
tion which can be obtained in a consistent way from the FRG by 
including only fermionic contributions to the flow, cf. Section 3.2
below. For small temperatures the boundary of the pion condensa-
tion phase is a first-order transition line. This is the analog of the 
Chandrasekhar–Clogston transition [1,2] in non-relativistic Fermi 
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Fig. 3. Phase structure of the quark–meson model for μI = mπ in mean-field approximation (MFA, left) and from the FRG (right). The Sarma phase occurs in the region 
between the dotted and dashed lines. While the MFA result looks very similar to the one of the UFG, cf. Fig. 4, the FRG result features a Sarma phase at T = 0.
gases. It turns second order for larger temperatures in a multicrit-
ical point which could become a Lifshitz point if inhomogeneous 
Fulde–Ferrell–Larkin–Ovchinnikov phases occur [4,5,23,69,70]. This 
situation is analogous to the inhomogeneous phases discussed for 
chiral symmetry restoration at finite baryon chemical potential in 
QCD, for a recent review see [71]. As outlined in the introduction, 
the second-order transition line at larger temperatures is accompa-
nied by a stable Sarma phase. The Sarma phase, however, does not 
extend to the zero temperature axis, because the Chandrasekhar–
Clogston limit is reached before a possible Sarma transition could 
occur at low temperatures in the mean-field calculation.

In contrast, the right panel of Fig. 3 shows the full result in-
cluding bosonic fluctuations in LPA. Here the phase boundary of 
the pion condensation phase remains second order throughout the 
whole phase diagram. However, an additional first-order transi-
tion arises inside the pion condensation phase. As the condensate 
jumps to a sufficiently low value across the phase boundary, the 
Sarma criterion is satisfied. Therefore, unlike in the mean-field 
calculation, the Sarma phase now extends down to zero tempera-
ture in the calculation including bosonic fluctuations. As discussed 
above, mean-field studies of chiral systems, however, suggest that 
the phase structure at low temperature is altered once inhomoge-
neous phases are taken into account. This effect may persist when 
fluctuations are included, but for the system under consideration 
no results are available thus far. In fact, the study of inhomoge-
neous phases beyond MFA poses a sophisticated task, see e.g. [72,
73] for recent developments within the FRG. For instance, within 
a derivative expansion the vanishing of the bosonic wave function 
renormalization may signal the onset of inhomogeneous conden-
sation [72].

Furthermore, on the mean-field level, the phase diagrams of the 
relativistic system, Fig. 3 (left), and the unitary Fermi gas (UFG), 
Fig. 4 (upper lines), look strikingly alike. In fact, the phase struc-
ture of the imbalanced Unitary Fermi Gas has become experimen-
tally accessible by now. The existence of a similar Sarma phase at 
low T in the non-relativistic system could hence be checked ex-
perimentally. This serves as our motivation to include fluctuations 
in the non-relativistic system and study its phase structure in Sec-
tion 3 below.

3. Non-relativistic system

As the non-relativistic realization of the system under consid-
eration, we study a system of ultracold two-component fermions 
close to a broad Feshbach resonance (FR). Its description in terms 
of the two-channel model is built on a Grassmann field ψσ , one 
complex bosonic field φ and the microscopic Lagrangian [13,16,74]
L =
∑

σ=1,2

ψ∗
σ

(
∂τ − ∇2

2Mσ
− μσ

)
ψσ − g

(
φ∗ψ1ψ2 + h.c.

)

+ φ∗
(

Zφ∂τ − Aφ

∇2

4M

)
φ + νΛφ∗φ. (5)

The two species of fermions couple to chemical potentials μσ , 
which in general are different. We assume the 1-atoms to be the 
majority species and write

μ1 = μ + δμ, μ2 = μ − δμ, (6)

with spin-imbalance δμ = h = (μ1 − μ2)/2 ≥ 0. The quantity h is 
also referred to as Zeeman field. We assume mass balance in the 
following and choose units such that h̄ = kB = 2Mσ = 2M = 1 for 
the non-relativistic analysis.

The parameter νΛ ∝ (B − B0) is related to the detuning from 
the FR, and eventually allows the computation of the s-wave scat-
tering length, a, of the system. The Feshbach coupling g2 ∝ ΔB
corresponds to the width of the FR. We assume the FR to be broad 
in the following, such that the two-channel model in Eq. (5) is 
equivalent to a single-channel model of fermions.

The self-interaction of the bosonic degree of freedom is en-
coded in the effective potential, U (ρ = φ∗φ). At the microscopic 
scale we have U (ρ) = νΛρ , but the ρ-dependence is changed 
substantially when including fluctuations. In the following, we 
compute the effective potential U (ρ) beyond the mean-field ap-
proximation with feedback of bosonic fluctuations. The minimum 
position of this potential, ρ0, is related to the superfluid density 
and acts as an order parameter for the superfluid-to-normal phase 
transition. For convenience, and similar to the relativistic case, we 
use the gap Δ2

0 = g2ρ0, rather than ρ0 itself as the order parame-
ter.

Note that the binding energy εB < 0 is non-zero on the BEC 
side, and the fermion chemical potential eventually becomes nega-
tive for large positive scattering length. By contrast, we set εB = 0
on the BCS side. The quantity μ̃ = μ − εB/2 > 0 is manifestly pos-
itive for non-vanishing density, and we choose units such that 
μ̃ = 1 when discussing the whole crossover. A negative chemical 
potential shifts the minimum in the Sarma criterion Eq. (2). Taking 
this possibility into account, the criterion generalizes to

δμ > min
p

√
ε2

p + Δ2
0 =

{
Δ0, (μ ≥ 0)√

μ2 + Δ2
0, (μ < 0).

(7)

3.1. Relation to the Relativistic Model

As we have argued above, the relativistic system Eq. (3) and 
the non-relativistic one, Eq. (5), both describe two-component 
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Table 1
Dictionary between quantities in the non-relativistic and relativistic system and 
their interpretation.

Non-relativistic Relativistic Interpretation

ψ1, ψ2 ψu , ψ
†
d spin/flavor eigenstates

μ μI induces pairing
δμ μq knob to destroy pairing
δn = n1 − n2 δn = nq − nq̄ population imbalance
Δ2 = g2φ∗φ Δ2 = g2π+π− pairing order parameter
– χ chiral condensate

fermionic systems in the BCS-BEC crossover. Actually, the La-
grangian Eq. (3) can be seen as the relativistic analog of Eq. (5): on 
a very basic level both represent a Yukawa system with fermions 
coupled to two different chemical potentials. To be precise, δμ in 
the non-relativistic case should be identified with the quark chem-
ical potential μq , whereas the chemical potential μ in the non-
relativistic case corresponds to the isospin chemical potential μI . 
To simplify the comparison we provide a dictionary between the 
two systems in Table 1.

On closer inspection, though, the field content of the mod-
els is different: the relativistic spinor is subject to an additional 
chiral symmetry, under which the left- and right-handed compo-
nents, ψR/L = 1

2 (1 ± γ5)ψ , transform separately. The four (real) 
bosonic degrees of freedom, transforming as singlet and triplet 
under isospin rotations, are related to these components in the fol-
lowing way

π+ ∼ uLd†
L + uRd†

R ,

π− ∼ dLu†
L + dR u†

R ,

π0 ∼ uLu†
L + uR u†

R − (u → d),

σ ∼ uLu†
R + uR u†

L + (u → d),

where we have used the notation u := ψu and d := ψd for bet-
ter readability. Using the correspondence ψ1 ↔ u and ψ2 ↔ d†, it 
is clear that π+ ↔ φ and π− ↔ φ∗ . The other two bosonic de-
grees of freedom, π0 and σ , however, have no counterpart in the 
non-relativistic system. They reflect the larger symmetry group, 
SU(2) × SU(2), of the relativistic system. Owing to this discrepancy, 
one can expect that the impact of bosonic fluctuations on the rel-
ativistic and non-relativistic systems is different. Furthermore, the 
fields u, d† each describe two independent fermions uL , uR and 
d†

L , d†
R , respectively, while ψ1 and ψ2 account only for a single 

fermion.
Other than that, the condensation of charged pions in Eq. (3)

is the equivalent of the di-fermion condensation occurring in the 
non-relativistic system. The related order parameter in both cases 
is the gap Δ. Note that also the universal aspects of a second-order 
condensation transition agree: the condensate Δ always breaks a 
U(1) symmetry.

3.2. FRG setting and truncation

To investigate the stability of the Sarma phase in the spin-
imbalanced BCS-BEC crossover we employ the FRG approach de-
scribed in [75,76]. We refer to those references for a detailed dis-
cussion of the truncation and regularization scheme. Here we only 
summarize the main features which are relevant for the present 
analysis.

To properly account for first-order phase transitions and the 
competition of multiple minima one needs to know the effective 
potential U (ρ) over a large range of ρ-values. For this purpose 
we discretize the potential on a grid in the gap Δ = g2ρ . Alter-
native approaches are based on higher-order Taylor expansions of 
the effective potential around a fixed value [77], or the expansion 
in terms of suitable basis functions. Note that a recent analysis 
of the BCS side in [78] is built on a Taylor expansion of U (ρ) to 
order ρ2, as thus fails to resolve the first-order transition in the 
perturbative Clogston limit [1,2]. Furthermore, we want to remark 
that the FRG approach allows to recover the mean-field result in a 
conceptually consistent way: neglecting the bosonic contributions 
to the flow equations, the standard mean-field result is reproduced 
[75,79,80].

From mean-field studies of the phase structure of the imbal-
anced UFG [31,32,35], we expect a first-order phase transition at 
low temperatures. This suggests that the stability of the Sarma 
phase at zero temperature is decided according to Scenarios II and 
III from above. To distinguish between these two scenarios, renor-
malization effects on Δc and δμ are expected to be important. In 
the present work, we introduce a single wave function renormal-
ization, Aφ , for the bosonic field and set Aφ = Zφ in Eq. (5). We do 
not include the particle-hole correction to the four-fermion vertex 
or the renormalization of the fermion propagator. Those contribu-
tions have been shown to be subleading for the phase structure of 
the balanced system with the FRG [80–84]. Here we discuss why 
we expect them to be subleading for the discussion of the exis-
tence of the Sarma phase as well.

From studies of the polaron [38,85,86] and the balanced UFG 
[80] it is known that fluctuation effects tend to increase the in-
dividual chemical potential, μσ , by a contribution approximately 
proportional to the chemical potential of the other species, μσ̄ . In 
both cases, fluctuations induce renormalization effects on the or-
der of 60%,

μσ,eff  μσ + 0.6μσ̄ . (8)

Assuming this relation to be generally valid, we can estimate the 
effective imbalance to be given by

δμeff = (μ1,eff − μ2,eff)/2  0.4δμ, (9)

i.e. the effective imbalance is smaller than the unrenormalized (or 
bare) one. The Sarma criterion Δc < δμeff, which has to be true 
for the renormalized (or dressed) parameters, is even less likely 
fulfilled. In particular, for most cases discussed below we find that 
the Sarma criterion is violated already for the unrenormalized im-
balance. According to our argument here, this implies that it is also 
violated for the renormalized one.

3.3. Unitary Fermi gas

Motivated by the similarity of its mean-field phase diagram to 
the relativistic system discussed in Section 2, we start our discus-
sion with the imbalanced UFG, where the superfluid is strongly 
correlated.

The mean-field phase structure is recovered by neglecting 
bosonic fluctuations in the FRG flow equation. This is demonstrated 
in Fig. 4 (upper lines labelled “MFA”). We find a second-order 
phase transition (blue, long-dashed line) for δμ = 0 in agree-
ment with the expectation from the balanced BCS-BEC crossover. 
The related mean-field critical temperature is Tc/μ = 0.665. In 
the imbalanced case we observe a first-order transition (red, solid 
line) from the superfluid to the normal phase at δμc/μ = 0.807
at zero temperature. The critical point, separating the first- from 
the second-order transition line, is found at (δμCP/μ, TCP/μ) =
(0.704, 0.373). These results are in line with the literature [32,35]. 
The Sarma phase (green, dotted line) appears in the vicinity of the 
second-order transition line. Note that the dotted green line, cor-
responding to the condition Δ = δμ, only serves as an orientation, 
since the transition is a crossover at non-zero temperature. The 
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Fig. 4. Phase structure of the imbalanced unitary Fermi gas. The upper lines cor-
respond to the mean-field approximation (MFA), the lower ones to the FRG result. 
We observe a substantial decrease in the critical temperature due to bosonic fluc-
tuations. The Sarma condition Δ = δμ is fulfilled along the dotted green line close 
to the second-order phase boundary. Interestingly, in both cases we do not find a 
Sarma phase at zero temperature.

Sarma crossover line terminates close to the critical point, where 
it hits the first-order transition. The jump in the gap then prevents 
the Sarma condition from being fulfilled for lower temperatures. 
This corresponds to Scenario III discussed above. We conclude that, 
at the mean-field level, there is no stable Sarma phase at T = 0.

Next we include the feedback of bosonic fluctuations. The re-
sulting phase diagram is also shown in Fig. 4 (lower lines labelled 
“FRG”). At vanishing imbalance we again find a second-order phase 
transition. The transition temperature, however, is drastically re-
duced to Tc/μ = 0.40. Overall, the inclusion of bosonic fluctuations 
makes the transition sharper, resulting in a shrinking Sarma phase. 
Furthermore, this phase appears at relatively high temperatures 
only. In this regime the presence of gapless fermionic excitations 
is smeared out, and may be difficult to detect in experiment.

At vanishing temperature we still find a first-order transition 
with a critical imbalance of δμc/μ = 0.83. This is larger than the 
mean-field prediction, and in reasonably good agreement with the 
recent experimental finding δμc/μ = 0.89 [87]. The latter refer-
ence also confirms the first-order phase transition at low temper-
atures.

Note that, due to its complexity, it is hard to evolve the FRG 
flow for very small k in the low temperature region. A conserva-
tive estimate for the latter is indicated by the grey band in Fig. 4. 
The determination of the phase boundary, however, is still reliable 
in this region. A more detailed discussion of this point is provided 
in [75]. Furthermore, the critical point, the onset of the first-order 
transition and the end of the Sarma phase all lie well above this 
band. Hence we can draw our conclusions independent of this lim-
itation.

3.4. BCS-BEC crossover

Our initial motivation to study the fate of the Sarma phase at 
low temperatures upon inclusion of fluctuations was the claim that 
the relativistic system discussed in Section 2 agrees with the UFG 
on the mean-field level. However, the mean-field phase diagrams 
throughout the BCS-BEC crossover look very similar, apart from a 
change of scales. Moreover, the simple estimate presented in Sec-
tion 2 suggests that the relativistic phase diagram shown there 
rather corresponds to a point on the BCS side of the crossover. 
Hence we extend our study to finite scattering lengths (the only 
tunable parameter in this system) in order to identify a region that 
might support a stable Sarma phase at T = 0. Additionally we want 
to note that even the phase structure of the imbalanced BCS-BEC 
Fig. 5. Quantum phase diagram of the imbalanced BCS-BEC crossover from the FRG. 
Units are chosen such that μ̃ = μ − εB/2 = 1. The first-order superfluid phase tran-
sition appearing on the BCS side persists on the BEC side up to the quantum critical 
point (QCP). The QCP is marked by a filled (open) square for the result from the 
FRG (mean-field) analysis. The onset of the Sarma phase along the first-order line 
according to Scenario II is indicated by the filled (open) circle for the FRG (mean-
field) result. The boundary of the Sarma phase on the BEC side is given by the 
dotted green line.

crossover beyond mean-field had been unknown to a large extent 
so far.

In the following we focus on the phase structure of the im-
balanced BCS-BEC crossover at zero temperature, i.e. the quantum 
phase diagram. The mean-field result has previously been calcu-
lated in, e.g., [30,32,35]. The superfluid-to-normal transition is of 
first order on the BCS side (a−1 < 0). This behavior persists on the 
BEC side (a−1 > 0) up to a quantum critical point (QCP) where the 
transition turns to second order. Within the mean-field approxima-
tion, the QCP is located at

(
√

μ̃a)−1
MF = 4.19, δμMF = 21.6μ̃ = 0.61|εB|.

We again employ the definition μ̃ = μ − εB/2.
The quantum phase diagram including the feedback of bosonic 

fluctuations from Functional Renormalization is shown in Fig. 5. 
Its structure is even quantitatively very similar to the mean-field 
result, hence we only show the FRG result and have superimposed 
the locations of the QCP and the onset of the Sarma transition from 
the MFA. On the BCS side and in the vicinity of the resonance, the 
transition is of first order. On the BEC side there is a QCP where a 
second-order line emerges. Its coordinates read

(
√

μ̃a)−1
FRG = 7.1, δμFRG = 56.2μ̃ = 0.56|εB|,

within our approximation. We see that, contrary to the relativistic 
case discussed above, fluctuations rather induce a first-order phase 
transition than a second order one.

The onset of the Sarma phase on the BEC side is located to the 
left of the QCP, and thus happens according to Scenario II in the 
terminology introduced above. The boundary of the Sarma phase 
according to Eq. (7) is indicated by the dotted green line in Fig. 5. 
It terminates in the first-order line at (

√
μ̃a)−1

MF = 2.27 in MFA, 
which is shifted towards (

√
μ̃a)−1

FRG = 2.6 when including bosonic 
fluctuations. To the right of the QCP we always find a stable Sarma 
phase below the second-order line, according to Scenario I. Since 
the Sarma phase only appears on the BEC side, the corresponding 
magnetized superfluid constitutes a homogeneous state consisting 
of a BEC of diatomic molecules with excess majority atoms.

Hence we find that our initial question for a parameter set that 
supports a Sarma phase at T = 0 including fluctuations, but not on 
the mean-field level, has to be answered negatively: the onset of 
the Sarma phase occurs at lower inverse scattering lengths in the 
MFA than with the FRG. In contrast, there is an, albeit small, win-
dow where the mean-field phase diagram shows a Sarma phase 
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which vanishes after the inclusion of fluctuations. Moreover, as dis-
tinguished from the relativistic case, a Sarma phase arises only on 
the BEC side of the crossover in the non-relativistic system.

4. Conclusions

Triggered by the close resemblance of the phase diagrams of 
relativistic and non-relativistic two-component fermion systems on 
the mean-field level, we have studied the fate of this similarity 
once fluctuations are taken into account.

We have studied the two-flavor quark–meson model coupled to 
quark as well as isospin chemical potentials as a relativistic realiza-
tion of this system. Fixing the isospin chemical potential to a value 
that allows for pion condensation, μI > mπ/2, one can study the 
breakdown of the related pion-superfluidity as the quark chemi-
cal potential is varied. In fact, on the mean-field level the resulting 
phase diagram looks remarkably similar to the one of the spin-
imbalanced unitary Fermi gas, see Section 3. Including fluctuations 
in the relativistic setting, the phase diagram changes drastically 
for μI � 0.79mπ : At low temperatures, the transition line splits 
into two branches, one of first and one of second order. Interest-
ingly, the Sarma-crossover line meets the first-order transition in 
the critical point, while the second-order line continues down to 
T = 0. This means that the relativistic system features a Sarma 
phase at T = 0.

The non-relativistic system under consideration, the spin-
imbalanced BCS-BEC crossover of ultracold atoms, does not show 
this feature despite the apparent similarities in the mean-field 
phase structure of both system. While the location of the phase 
boundaries is modified by the inclusion of fluctuations, e.g. the 
critical temperature is drastically reduced, the general structure of 
the phase diagram persist. At unitarity, the unpolarized superfluid 
ground state at zero temperature is separated from the normal 
phase by a first-order phase transition. Moreover, the Sarma crite-
rion (2) is not fulfilled at the phase boundary. Thus the superfluid 
with unequal densities n1 �= n2 can only be realized as an in-
homogeneous mixed state. The realization of a first-order phase 
transition is in agreement with the available experimental data.

Since the relativistic system considered in Section 2 presum-
ably lies on the BCS side of the crossover, we have extended our 
non-relativistic study to the whole BCS-BEC crossover at low T . 
A zero temperature Sarma phase in the non-relativistic setup is 
only found on the BEC side of the crossover, close to the region 
predicted from mean-field theory. We were able to locate the QCP 
on the BEC side, where the transition changes from first to second 
order. An interesting question then concerns the critical exponents 
at the QCP on the BEC side, which can be computed with the FRG 
to high accuracy [88]. A more detailed analysis of the quantum 
critical properties of the QCP will be presented elsewhere.

Finally, as we have discussed in Section 3.1, there exist some 
crucial differences between the relativistic and non-relativistic sys-
tems under consideration: Due to the additional chiral symmetry, 
the relativistic system features effectively four species of fermions 
as well as four real bosonic degrees of freedom. Of these, the 
chirality-preserving but flavor-mixing combinations, corresponding 
to the bosonic fields π± , are the counterparts of the complex non-
relativistic boson φ. The presence of two additional bosonic modes, 
however, modifies the dynamics of the system substantially. In par-
ticular, it results in a Sarma phase at vanishing temperature in the 
relativistic theory that is not present in the non-relativistic setting. 
The agreement of the phase diagrams on the mean-field level, on 
the other hand, suggests that the differences in the fermionic sec-
tor are not as crucial.

Based on these observations, we can now suggest a non-
relativistic system that resembles the relativistic one more closely. 
Such a system would be interesting to study both experimentally 
and theoretically, since it might feature a Sarma phase at T = 0, 
similar to the relativistic theory discussed above. For this purpose, 
one needs to study a system with four fermion species, ψ1,2,3,4. 
Furthermore, interactions need to be tuned such that channels 
equivalent to the interactions in Eq. (3) are present and have sim-
ilar interaction strengths. The corresponding microscopic Hamilto-
nian, which needs to be implemented with cold atoms, reads

Ĥ =
∫

d3x

[
4∑

σ=1

ψ
†
σ

(
− ∇2

2M
− μσ

)
ψσ

+ λ
(
(ψ1ψ2)

†ψ1ψ2 + (ψ3ψ2)
†ψ3ψ2

+ (ψ1ψ4)
†ψ1ψ4 + (ψ3ψ4)

†ψ3ψ4
)]

. (10)

The resulting system then possesses a chiral symmetry similar to 
the relativistic one, with SU(2)L acting on the doublet (ψ1, ψ3)

and SU(2)R acting on (ψ2, ψ4). The interaction involves particu-
lar combinations of nα = ψ

†
αψα , namely (n1 + n3)(n2 + n4). One 

could expect to find a similar phase structure as shown in Fig. 3, 
in particular a Sarma phase at T = 0.
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