1,278 research outputs found

    On the relation of quark confinement and chiral symmetry breaking

    Full text link
    We study the phase diagram of QCD with the help of order parameters for chiral symmetry breaking and quark confinement. We also introduce a new order parameter for the confinement phase transition, which is related to the quark density. It is easily accessible by different theoretical approaches, such as functional approaches or lattice simulations. Its relation to the Polyakov loop expectation value is discussed and the QCD phase diagram is analysed. Our results suggest a close relation between the chiral and the confinement phase transition.Comment: 5 pages, 3 figure

    Existence of an information unit as a postulate of quantum theory

    Get PDF
    Does information play a significant role in the foundations of physics? Information is the abstraction that allows us to refer to the states of systems when we choose to ignore the systems themselves. This is only possible in very particular frameworks, like in classical or quantum theory, or more generally, whenever there exists an information unit such that the state of any system can be reversibly encoded in a sufficient number of such units. In this work we show how the abstract formalism of quantum theory can be deduced solely from the existence of an information unit with suitable properties, together with two further natural assumptions: the continuity and reversibility of dynamics, and the possibility of characterizing the state of a composite system by local measurements. This constitutes a new set of postulates for quantum theory with a simple and direct physical meaning, like the ones of special relativity or thermodynamics, and it articulates a strong connection between physics and information.Comment: Published version - 6 pages, 3 appendices, 3 figure

    Towards Functional Flows for Hierarchical Models

    Get PDF
    The recursion relations of hierarchical models are studied and contrasted with functional renormalisation group equations in corresponding approximations. The formalisms are compared quantitatively for the Ising universality class, where the spectrum of universal eigenvalues at criticality is studied. A significant correlation amongst scaling exponents is pointed out and analysed in view of an underlying optimisation. Functional flows are provided which match with high accuracy all known scaling exponents from Dyson's hierarchical model for discrete block-spin transformations. Implications of the results are discussed.Comment: 17 pages, 4 figures; wording sharpened, typos removed, reference added; to appear with PR

    Renormalization flow of Yang-Mills propagators

    Full text link
    We study Landau-gauge Yang-Mills theory by means of a nonperturbative vertex expansion of the quantum effective action. Using an exact renormalization group equation, we compute the fully dressed gluon and ghost propagators to lowest nontrivial order in the vertex expansion. In the mid-momentum regime, p2O(1)GeV2p^2\sim\mathcal{O}(1)\text{GeV}^2, we probe the propagator flow with various {\em ans\"atze} for the three- and four-point correlations. We analyze the potential of these truncation schemes to generate a nonperturbative scale. We find universal infrared behavior of the propagators, if the gluon dressing function has developed a mass-like structure at mid-momentum. The resulting power laws in the infrared support the Kugo-Ojima confinement scenario.Comment: 28 pages, 5 figures. V2: Typos corrected and reference adde

    Standard Model with Cosmologically Broken Quantum Scale Invariance

    Full text link
    We argue that scale invariance is not anomalous in quantum field theory, provided it is broken cosmologically. We consider a locally scale invariant extension of the Standard Model of particle physics and argue that it fits both the particle and cosmological observations. The model is scale invariant both classically and quantum mechanically. The scale invariance is broken cosmologically producing all the dimensionful parameters. The cosmological constant or dark energy is a prediction of the theory and can be calculated systematically order by order in perturbation theory. It is expected to be finite at all orders. The model does not suffer from the hierarchy problem due to absence of scalar particles, including the Higgs, from the physical spectrum.Comment: 13 pages, no figures significant revisions, no change in results or conclusion

    Nuclear multifragmentation time-scale and fluctuations of largest fragment size

    Get PDF
    Distributions of the largest fragment charge, Zmax, in multifragmentation reactions around the Fermi energy can be decomposed into a sum of a Gaussian and a Gumbel distribution, whereas at much higher or lower energies one or the other distribution is asymptotically dominant. We demonstrate the same generic behavior for the largest cluster size in critical aggregation models for small systems, in or out of equilibrium, around the critical point. By analogy with the time-dependent irreversible aggregation model, we infer that Zmax distributions are characteristic of the multifragmentation time-scale, which is largely determined by the onset of radial expansion in this energy range.Comment: Accepted for publication in Physical Review Letters on 8/4/201

    Two- and three-point functions in two-dimensional Landau-gauge Yang-Mills theory: Continuum results

    Full text link
    We investigate the Dyson-Schwinger equations for the gluon and ghost propagators and the ghost-gluon vertex of Landau-gauge gluodynamics in two dimensions. While this simplifies some aspects of the calculations as compared to three and four dimensions, new complications arise due to a mixing of different momentum regimes. As a result, the solutions for the propagators are more sensitive to changes in the three-point functions and the ansaetze used for them at the leading order in a vertex a expansion. Here, we therefore go beyond this common truncation by including the ghost-gluon vertex self-consistently for the first time, while using a model for the three-gluon vertex which reproduces the known infrared asymptotics and the zeros at intermediate momenta as observed on the lattice. A separate computation of the three-gluon vertex from the results is used to confirm the stability of this behavior a posteriori. We also present further arguments for the absence of the decoupling solution in two dimensions. Finally, we show how in general the infrared exponent kappa of the scaling solutions in two, three and four dimensions can be changed by allowing an angle dependence and thus an essential singularity of the ghost-gluon vertex in the infrared.Comment: 24 pages; added references, improved choices of parameters for vertex models; identical to version published in JHE

    Functional renormalization group in the broken symmetry phase: momentum dependence and two-parameter scaling of the self-energy

    Full text link
    We include spontaneous symmetry breaking into the functional renormalization group (RG) equations for the irreducible vertices of Ginzburg-Landau theories by augmenting these equations by a flow equation for the order parameter, which is determined from the requirement that at each RG step the vertex with one external leg vanishes identically. Using this strategy, we propose a simple truncation of the coupled RG flow equations for the vertices in the broken symmetry phase of the Ising universality class in D dimensions. Our truncation yields the full momentum dependence of the self-energy Sigma (k) and interpolates between lowest order perturbation theory at large momenta k and the critical scaling regime for small k. Close to the critical point, our method yields the self-energy in the scaling form Sigma (k) = k_c^2 sigma^{-} (k | xi, k / k_c), where xi is the order parameter correlation length, k_c is the Ginzburg scale, and sigma^{-} (x, y) is a dimensionless two-parameter scaling function for the broken symmetry phase which we explicitly calculate within our truncation.Comment: 9 pages, 4 figures, puplished versio

    Constrained caloric curves and phase transition for hot nuclei

    Get PDF
    Simulations based on experimental data obtained from multifragmenting quasi-fused nuclei produced in central 129^{129}Xe + nat^{nat}Sn collisions have been used to deduce event by event freeze-out properties in the thermal excitation energy range 4-12 AMeV [Nucl. Phys. A809 (2008) 111]. From these properties and the temperatures deduced from proton transverse momentum fluctuations, constrained caloric curves have been built. At constant average volumes caloric curves exhibit a monotonic behaviour whereas for constrained pressures a backbending is observed. Such results support the existence of a first order phase transition for hot nuclei.Comment: 14 pages, 5 figures, accepted in Physics Letters
    corecore