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The recursion relations of hierarchical models are studied and contrasted with functional renormal-
ization group equations in corresponding approximations. The formalisms are compared quantitatively for
the Ising universality class, where the spectrum of universal eigenvalues at criticality is studied. A
significant correlation amongst scaling exponents is pointed out and analyzed in view of an underlying
optimization. Continuous functional flows are provided which match with high accuracy all known scaling
exponents from Dyson’s hierarchical model for discrete block-spin transformations. Implications of the
results are discussed.
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I. INTRODUCTION

Renormalization group methods [1], and, in particular,
Wilson’s renormalization group [2], play an important role
in the study of physical systems at strong coupling and/or
large correlations lengths. Differential implementations of
Wilson’s idea [3–10] rely on an appropriately-introduced
momentum cutoff leading to flow equations for running
couplings and N-point functions, which can be studied
with a large variety of analytical and numerical methods.
Numerical stability and reliability in the results is ensured
through powerful control and optimization techniques [11–
14]. A different implementation of Wilson’s idea is realised
in hierarchical models of lattice scalar theories [15–19].
Hierarchical renormalization group transformations are
often discrete rather than continuous. Here, sophisticated
numerical methods have been developed to extract the
relevant physics, most notably for high-accuracy studies
of scaling exponents for scalar models at criticality [20–
22] and related theories (see [19] and references therein).

Given the close similarity of the underlying principles, it
is natural to ask whether Wilsonian (functional) flows can
be linked explicitly, and on a fundamental level, to hier-
archical models. If so, this link would provide a number of
benefits. It will make powerful functional and numerical
methods available to the study of hierarchical models. Vice
versa, the numerical tools for hierarchical models could be
employed for functional flows in specific approximations.
Furthermore, an explicit link may lead to a path integral
representation of hierarchical models, allowing for system-
atic improvements beyond a standard kinetic term. Finally,
well-developed optimization techniques for functional
flows could be taken over for hierarchical models as well.

In the limit of continuous hierarchical block-spin trans-
formations, an explicit link between Dyson’s hierarchical
model [15,17] and the Wilson-Polchinski flow [23] in the
local potential approximation has been established long

ago by Felder [24]. Following a conjecture of [13], this link
has been extended [25,26] to include optimised versions
[11,12] of Wetterich’s flow for the effective average action
[27]. These interrelations have recently been backed-up by
extensive numerical studies of critical potentials and scal-
ing exponents to high accuracy from either formalism [28].

In this paper, we evaluate the more general case and ask
whether hierarchical models for discrete block-spin trans-
formations are linked to functional flows with continuous
renormalization group transformations. We first contrast
the basic setups for functional flows (Sec. II), background
field flows (Sec. III), and hierarchical models (Sec. IV). At
a Wilson-Fisher fixed point, underlying similarities and
differences are worked out and compared for the leading
scaling exponent (Sec. V). An extensive numerical study of
the eigenvalue spectrum of the Ising universality class from
functional flows is performed (Sec. VI). A strong correla-
tion of scaling exponents is established and analyzed
(Sec. VII). It is shown that specific functional flows match
the leading and subleading scaling exponent from Dyson’s
hierarchical models for discrete transformation parameter
to high accuracy (Sec. VIII). We close with a discussion of
the results and further implications (Sec. IX).

II. FUNCTIONAL FLOWS

Wilsonian (functional) flows integrate out quantum fluc-
tuations within a path integral representation of quantum
field theory. In their simplest form, they are generated
through a cutoff term quadratic in the field added to the
Schwinger functional, where the (classical) action is re-
placed by S! S��Sk and �Sk �

R
dq��q��

Rk�q
2����q�. The infrared momentum cutoff Rk�q2� en-

sures that the propagation of small momentum modes
q2 � k2 is suppressed, while the large momentum modes
q2 � k2 remain unaffected. Under an infinitesimal change
in the Wilsonian (infrared) cutoff scale k, the effective
action �k changes according to its functional flow, which
reads (t 	 lnk)

 @t�k 	
1
2 Tr���2�k � Rk�

�1@tRk (1)
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in the form put forward by Wetterich [27]. The trace
denotes a momentum integration and a summation over
fields. The factor @tRk in the integrand is peaked in the
vicinity of q2 
 k2. The cutoff function Rk obeys
Rk�q2� ! 0 as k2=q2 ! 0, Rk�q2�> 0 as q2=k2 ! 0, and
Rk�q2� ! 1 as k! �, and can be chosen freely elsewise,
e.g. [11]. It ensures that the flow is well-defined, thereby
interpolating between an initial action S at k 	 � in the
ultraviolet (UV) and the full quantum effective action � �
�k	0 in the infrared k! 0.

In addition to providing a momentum cutoff, the func-
tion Rk�q2� also controls the stability and convergence of
subsequent expansions [11–13,29]. Therefore, it is possible
to identify optimized momentum cutoffs—within given
systematic expansions—which improve the physical result
[11,12,30]. The construction of optimized cutoffs [11–14]
is central to extract reliable results also in more complex
theories including e.g. QCD [31], quantum gravity [32],
thermal physics [5,6,33], and critical phenomena
[28,30,34].

Below, we are interested in 3d scalar theories at criti-
cality, where we can sent the ultraviolet scale �!1. To
leading order in the derivative expansion, the effective
action reads �k 	

R
d3x�12 @��@���Uk� ��� and �� 	

1
2�

2. Introducing r�y� 	 Rk�q2�=q2 with y 	 q2=k2, we
find

 @tu 	 �3u� �u0 �
Z 1

0
dy

�y3=2r0�y�
y�1� r� � u0 � 2�u00

(2)

with u��� 	 Uk� ���=k
3 and � 	 ��=k. An irrelevant con-

stant originating from the angular integration has been
rescaled into the potential and the fields. For the optimal
cutoff Ropt 	 �k2 � q2���k2 � q2� with ropt 	 �1=y�
1���1� y�, the flow reads [12]

 @tu 	 �3u� �u0 �
1

1� u0 � 2�u00
(3)

after an additional rescaling. This flow is integrated ana-
lytically in the limit of a large number of scalar fields [35].
We note that the universal content of the flow (3) is
equivalent to the Wilson-Polchinski flow in the local po-
tential approximation [13,25,26].

III. BACKGROUND FIELD FLOWS

A different form of the flow (1) is obtained for momen-
tum cutoffs which depend additionally on a background
field ��. Background fields are most commonly used for the
study of gauge theories [36], see [32,37,38] for applica-
tions. They have also been employed for a path integral
derivation of (generalized) proper-time flows [39,40].

In the presence of background fields, the functional
�k�� turns into a functional of both fields, �k��; ��. In
order to maintain the one-loop exactness of (1), the mo-
mentum cutoff can only depend on the background field,

but not on the propagating field. Following [39], we in-
troduce x 	 ��2;0���;� and �x 	 x�� 	 ��, where
��n;m�k ��; �� � �n�m�k=��n� ��m. We chose momentum
cutoffs of the form Rk�q2� ! �xr� �x, which depend now on
the background field. Here, the regulator cuts off both large
momentum modes q2 � k2 and large field amplitudes with
��2;0�k � k2. The full advantage of background fields be-
comes visible once they are identified with the physical
mean, leading to the functional �k��; �� 	 � ! �k��.
The resulting flow is closed provided ��2�k �� 	
��2;0�k ��;�. For scalars, this relation becomes exact in
the infrared limit studied below (for gauge fields, see
[38]). Using the momentum cutoffs [39]

 rPT;m�x	 exp
�

1

m

�
mk2

x

�
m

2F1

�
m;m;m�1;�

mk2

x

��
�1;

we are lead to the background field flow

 @t�k 	 Tr
�

k2

k2 � x=m

�
m
�

1

2
Tr
�

rPT;m

x�1� rPT;m�

�

�
k2

k2 � x=m

�
m 1

x

�
@tx: (4)

If the term �@tx on the right-hand side is dropped—
meaning that additional flow terms originating from the
implicit scale dependence in the momentum cutoff are
neglected over the leading term—the flow (4) reduces to
the proper-time flow of Liao [41]. A general proper-time
flow is a linear combination of the first term in (4) for
various m [40]; see [42,43] for applications.

Next, we specialize to the proper-time approximation to
leading order in the derivative expansion. The flow equa-
tion for the effective potential takes the very simple form

 @tu 	 �3u� �u0 �
1

�m� u0 � 2�u00�m�3=2
; (5)

where m parametrizes the momentum cutoff, and an irrele-
vant constant factor has been rescaled into the potential and
the fields. For m 2 �1; 5

2, the flow (5) is mapped onto the
flow (2) [39]. At m 	 5

2 , the flow (5) is equivalent to (3),
modulo a trivial rescaling. As a final remark, we note that
this proper-time flow is also obtained from linear combi-
nations of higher scale-derivatives of Callan-Szymanzik
flows, without relying on background fields [40]. In this
representation, the approximation leading to (5) consists in
the neglect of higher order flow terms �@nt ��2�k .

IV. HIERARCHICAL MODELS

Several hierarchical models for an effective potential
v�’� of a lattice scalar field have been introduced in the
literature [15–17] (see also [19]). The hierarchical trans-
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formation laws relate the potential v�’� at momentum
scale k=‘ with an average in field space over v�’� at
momentum scale k, where ‘ � 1 is the renormalization
group step parameter. We restrict ourselves to the three-
dimensional case; the generalization to arbitrary dimen-
sions is straightforward.

In Dyson’s model [15,17], the renormalization group
step k! k=‘ for the potential is expressed as

 e�vk=‘�’� 	
Z �1
�1

d��‘���e�‘
3vk�‘�1=2’���: (6)

The details of the averaging procedure are encoded in the
measure factor �‘���, in the �-dependence of the potential
on the right-hand side of (6), and in the choice for the
decimation parameter ‘. As is evident from (6), a decima-
tion parameter ‘ 	 21=3 —employed for most numerical
studies [19–22]—corresponds to a volume decimation of
‘3 	 2 at each iteration. For Dyson’s model, the measure is
chosen as �‘��� 	 ����‘��

�1=2 exp���2=��‘�� [19],
where we require ��‘�> 0 for ‘ � 1, and ��1� 	 0 with
�0�1� � 0. A standard choice is ��‘� 	 2�‘� 1� [24]. By
definition, (6) describes a flow towards the infrared for
decimation parameters ‘ � 1. For ‘! 1, the hierarchical
transformation (6) becomes continuous and the measure
factor turns into a �-function�‘!1��� ! ����. Performing
�‘@‘ (6), which is equivalent to k@k (6), we arrive at a
differential flow equation for the effective potential [24]

 @tv 	 �3v� 1
2’v

0 � v00 � �v0�2; (7)

where an irrelevant factor is rescaled into the fields and the
potential; t 	 lnk. The interaction terms in (7) originate
from the scale-derivative of the measure �‘@‘�‘���,
which reads 1

4�
0�1��00��� in the limit ‘! 1. This high-

lights the relevance of the measure factor in hierarchical
models. Our normalization corresponds to the choice
�0�1� 	 4 to match with [28]. The limit (7) is independent
of �, but at ‘ � 1, we expect that scaling solutions and
exponents from (6) depend on it. Equation (7) is the well-
known Wilson-Polchinski flow [2,23]. We therefore con-
clude that the potential in (7) is related to the potential in
(3) by a Legendre transformation [26,28].

A different version of a hierarchical model has been
introduced by Wilson [16]. Here, the recursion relation is
written as

 e�vk=‘�’� 	
Z �1
�1

d��‘���e
��1=2�‘3�vk�‘�1=2’����vk�‘�1=2’���:

(8)

In Wilson’s original model, the �-dependence of the mea-
sure is �‘��� 	 N‘ exp���2�, where the normalization
factor N‘ is �-independent [19]. The measure factor is
different from the one in Dyson’s model, because the
Gaussian width is ‘-independent. If instead we employ

the measure of Dyson’s model, the limit ‘! 1 can be
performed analytically.1 Up to a trivial rescaling, we find

 @tv 	 �3v� 1
2’v

0 � v00: (9)

In contrast to the Wilson-Polchinski flow (7), the nonlinear
term �v0�2 is absent. This comes about because the inte-
grand of (8)—as opposed to the integrand of (6)—is
manifestly symmetric under �! ��. Numerical evalu-
ations of (8) have been reported in [16,44]. For other
representations of hierarchical models we refer to [19]
and references therein.

V. MATCHING HIERARCHICAL MODELS

In order to match hierarchical models by functional
flows, we have to detail the scheme dependences of physi-
cal observables in either formalism. In the functional RG
framework, the fully integrated flow is independent of the
momentum cutoff Rk�q2� chosen for the integration.
Scheme dependences, which enter as a consequence of
truncations of �k��, have been discussed extensively in
the literature [11–13,29,45]. Their origin is easily under-
stood. Since the momentum cutoff R in (1) couples to all
operators in the theory, the missing back-coupling of op-
erators neglected in a given truncation can result in a
spurious dependence of physical observables evaluated
either from �0��, or from a fixed point solution ����.
The scheme dependence is reduced by identifying those
momentum cutoffs, which, in a given truncation, lead to an
improved convergence and stability of the flow.

In Fig. 1, we discuss the scheme dependence quantita-
tively for the leading order scaling exponent 	 at a fixed
point of the 3d Ising universality class [29]. Within exact
flows (2), the full Rk-dependence has been studied in [30]
by evaluating the fixed points of (2) for general cutoffs
(Fig. 1, first column). The main result is that the range of
achievable values is bounded from above and from below.
The upper bound is attained for Callan-Symanzik type
flows with Rk � k

2. The lower bound with 	 	 	opt is
attained with the optimal flow (3), and hence equivalent
to the Wilson-Polchinski flow. The sharp cutoff result is
indicated for comparison.

The proper-time flow (5) rests on an intrinsically differ-
ent truncation, because implicit dependences on the back-
ground field have been neglected as well as higher order
flow terms proportional to the flow of ��2�; see Sec. III.
Therefore scheme dependences are quantitatively differ-

1The variance of the Gaussian measure in (8) can be changed
by an explicit rescaling of the fields as ’! ’=

����
�
p

for finite �,
see [19]. Rescaling also the integration variable �! �=

����
�
p

, and
denoting the potential in terms of the rescaled fields again as
v�’�, we obtain (8) with a rescaled measure �‘��� 	
N‘�

�1=2 exp���2=��. It agrees with the measure of Dyson’s
model for N‘ 	 ��1=2 and � 	 ��‘�. I thank Y. Meurice for
Email correspondence on this point.
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ent. In the approximation (4), the m-dependence of scaling
exponents from (5) has been studied in [39,42] (Fig. 1,
second column). The range of values is again bounded
from above by a Callan-Symanzik flow. The lower bound
is achieved for m! 1. We note that the range of values
exceeds those achievable within (standard) exact flows.
The lower bound may be overcome once the additional
flow terms, neglected here, are taken into account [39].
This is indicated by the dashed line.

Next we consider scheme dependences of hierarchical
models. Based on their construction, we expect that physi-
cal observables depend on the averaging procedure, on the
measure factor �‘, and on the decimation parameter ‘. It
has proven difficult to systematically include wave func-
tion renormalizations and higher order operators in hier-
archical models, and it is therefore not known whether the
scheme dependence vanishes upon higher order correc-
tions [18,19]. Still, the scheme dependence should give a
reasonable estimate for the underlying error in the model
assumptions, in particular, in comparison with functional
methods.

The ‘-dependence of Wilson’s model (8), originally
constructed for ‘ 
 2, has been studied in [44] in the range
‘ 2 �21=3; 2 (Fig. 1, third column). The full line covers the

range of values obtained in the literature, while the dashed
lines indicate that the underlying parameter space has not
been exhausted. Because of (9) being linear in the potential
as opposed to (7), we expect a strong ‘-dependence, pos-
sibly a discontinuity, in the limit ‘! 1. The slope ‘@‘	�‘�
along the data points with ‘ > 21=3 is negative, meaning
that 	�‘� increases for smaller ‘. We stress that Wilson’s
HM has an overlap both with exact flows and proper-time
flows. Therefore, it is possible to map 	�‘� of Wilson’s
model for certain decimation parameters ‘ onto 	�R� from
functional flows with appropriately chosen R. On the other
hand, for some decimation parameter ‘, Wilson’s model
can only be mapped onto proper-time flows but not on
exact flows, while for some decimation parameter it cannot
be mapped onto either of them.

The ‘-dependence of Dyson’s model (6) is displayed in
Fig. 1, fourth column. The full line connects the known
results at ‘ 	 1 [28,30], ‘ 	 21=3 [20,22] and ‘ 	 2 [20].
The dashed line towards larger values for 	 indicates that
the parameter space ‘ � 1 has not been exhausted. We note
that the ‘-dependence is very weak, with a tiny slope in the
range of ‘-values covered. The important observation is
that the slope ‘@‘	�‘� is positive in the vicinity of ‘ 

1� 2, implying that 	�‘�> 	�1� for ‘ > 1. Consequently,
it is possible to map the scaling exponent 	�‘� at discrete
block-spin transformation ‘ > 1 onto 	�R� from functional
flows for specific momentum cutoff R, both within the
standard exact flows and within proper-time flows. This
supports the conjecture that Dyson’s model can be mapped
onto functional flows.

VI. SPECTRUM OF EIGENVALUES

Whether the observations of the preceding section can
be promoted to a full map between the formalisms cru-
cially depends on further observables including the sub-
leading scaling exponents. Here and in the following
section, we study the spectrum of universal eigenvalues
(scaling exponents) form functional flows (2) to high ac-
curacy. A fixed point solution u� � const: of (2) is char-
acterized by the universal eigenvalues of eigen-
perturbations in its vicinity. We denote the ordered set of
eigenvalues as O�R�	 f!i�R�;i	0;��� ;1g, with !i<!j

for i < j.2 In addition to the leading exponent 	�R��
�1=!0, we study the first three subleading scaling expo-
nents !�R� � !1�R�, !2�R� and !3�R� within the exact
flow (2) for various cutoffs and coarse graining parameters.

For the numerical analysis, we introduce several classes
of momentum cutoffs defined through rmexp	b=��b�
1�y�1�, rexp	1=�expcyb�1�; rmod	1=�exp�c�y��b�
1�yb�=b�1�, with c 	 ln2; and ropt;n	b�1=y�1�n��1�
y�. These cutoffs include the sharp cutoff (b! 1) and

ν
Callan-Symanzik

sharp cutoff

WP/opt

mean field

exact RG

proper-time RG

Wilson HM

Dyson HM

0.5

0.61

0.626

0.649562

0.649570

0.650163

0.653

0.6895

1

FIG. 1 (color online). Comparison of scaling exponent 	 from
different functional flows (RG) in the local potential approxi-
mation, and hierarchical models (HM). The solid lines indicate
the range of values obtained in the literature. The dashed lines, if
present, indicate that the underlying parameter space has not
been exhausted. The horizontal lines from top to bottom indicate
the results for Callan-Symanzik flows, the sharp cutoff flow, the
Wilson-Polchinski (optimal) flow, and the mean field result. A
nonlinear rescaling of the 	-axis is introduced for display
purposes only (see main text). Color coding: exact RG (red),
exact background field RG in the proper-time approximation
(violet), Wilson’s hierarchical model (blue) and Dyson’s hier-
archical model (light blue).

2In our conventions, the sole negative eigenvalue at the
Wilson-Fisher fixed point is !0.
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asymptotically smooth Callan-Symanzik type cutoffs Rk �
k2 as limiting cases. The larger the parameter b, for each
class, the ‘‘sharper’’ the corresponding momentum cutoff.
The cutoff ropt;n probes a two-dimensional parameter space
in the vicinity of ropt to which it reduces for b 	 1 and n 	
1. For integer n, ropt;n is a C�n�1� function. In addition, we
consider the cutoffs rmix 	 exp��b�

���
y
p
� 1=

���
y
p
� and

rmix;opt 	 exp�� 1
b �y

b � y�b�, which obey rmix�1=y� 	
1=rmix�y�. Note that we have covered a large variety of
qualitatively different momentum cutoffs including expo-
nential, algebraic, power-law, sharp cutoffs and cutoffs
with compact support. Except for ropt;n, all cutoffs are
C�1�-functions. We employ the numerical techniques de-
veloped in [28,30].

Our results for the universal eigenvalues at criticality are
displayed in Fig. 2 for the six two-dimensional projections
of the four-dimensional subspace f�!0; !;!2; !3g of ob-
servables. The plot contains roughly 103 data points, the
different classes of cutoffs are color-coded. We focus on
the relevant 10%-vicinity of the Wilson-Polchinski result
with scaling exponents Oopt � O�Ropt� from (3), indicated
by a large black dot, see [28] for the high-accuracy nu-
merical values. The central result of Fig. 2 is that scaling
exponents are very strongly correlated. Despite having
probed the space of observables by many qualitatively
different momentum cutoffs, we find that only a small
subset of values can actually be achieved. The correlations
increase the closer the eigenvalues O move towards Oopt.
In the immediate vicinity of the Wilson-Polchinski result,

a) ω

ω ω ω ω

ω ωω ω

vs. −ω ω ω0 d) vs. 2

1.46 1.48 1.5 1.52 1.54

0.58

0.6

0.62

0.64

0.66

2.8 2.9 3 3.1 3.2

0.58

0.6

0.62

0.64

0.66

b) 2 vs. − 0 e) 2 vs. 3

1.48 1.5 1.52 1.54

2.9

2.95

3

3.05

3.1

3.15

3.2

5.3 5.4 5.5 5.6 5.7 5.8 5.9 6

2.9

2.95

3

3.05

3.1

3.15

3.2

c) − 0 vs. 3 f) vs. 3

5.3 5.4 5.5 5.6 5.7 5.8 5.9 6

1.48

1.5

1.52

1.54

5.3 5.4 5.5 5.6 5.7 5.8 5.9 6
0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

rmod

ropt ,1

rmexp

(rPT )

rexp

rmix

rmix ,opt

rpower

FIG. 2 (color online). Six two-dimensional projections of the four leading scaling exponents in the Ising universality class from the
functional flow (2) for various cutoffs and coarse graining (approximately 103 data sets). Here, 	 � �1=!0. The Wilson-Polchinski
result from the optimal flow (3) (large black dot) corresponds to a local extremum for all scaling exponents. Data sets based on rpower,
rmix;opt, rmix, rexp, rmexp, ropt;1, and rmod; data from rPT is included in Fig. 4.
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we only find a very narrow ‘‘throat’’ connecting observ-
ables O�R�with Oopt. For the subleading scaling exponents
!i, the throat remains very narrow even further away from
Oopt. This is seen most clearly in the correlation of!2 with
!3 in Fig. 2(e), as well as in the correlations of!with both
!2 and !3 in Fig. 2(d) and 2(f). In turn, for the leading
exponents 	, the throat opens up more rapidly once its
value is further away from 	opt, see Fig. 2(a)–2(c).

VII. CORRELATIONS OF EIGENVALUES

The strong correlation of scaling exponents is a struc-
tural fingerprint of Wilsonian flows (2). Since the Wilson-
Polchinski result is distinguished in the space of scaling
exponents, it is natural to normalise the data of Fig. 2 with
respect to it. We introduce the distance of any pair of
scaling exponents �x; y� from the optimal result �xopt; yopt�

as

 ��x; y� 	
��������������������������������������������������
�xopt � x�2 � �yopt � y�2

q
� 10�N��x;y�: (10)

We have chosen a standard metric in the space of observ-
ables (other choices can be applied as well). In this repre-
sentation, full agreement with the (optimal) Wilson-
Polchinski result is achieved for �! 0 and N� ! 1. We
also introduce the angles

 ’�x; y� 	 arctan�x=y�: (11)

The critical indices 	 and !i, i � 1, are positive numbers.
Therefore, they can cover the range x=y 2 �0;1 and ’ 2
�0; �2, and � � 0 for any pair of observables �x; y�. In the
subspace �	;!�, the extremal values �	opt; !opt� have the
polar coordinates ��opt; ’opt�, where the angle reads ’opt 	

0:780 66 � � � which is close to �=4 	 0:785 398 � � � , and
�opt 	 0. The radial distance from the origin is ��0; 0� 	
0:923 002 � � � .

In the representation (10), we can study the close vicin-
ity of the Wilson-Polchinski result. In Fig. 3, we display
our data points as functions of the angles ’, and their
distance from �opt in a semilogarithmic basis. It is note-
worthy that only a very narrow range of angles ’ is
actually achieved by the data, despite the fact that large
fractions of the underlying space of momentum cutoffs is
covered. Also, and in contrast to Fig. 2(a), many data
points are degenerate in the representation �N�;’�. A
priori, the Wilson-Polchinski value ��opt; ’opt� could
have been approached along many different paths.
Instead, we find that only a narrow range of
�N�;’�-values is achieved for arbitrary momentum cutoff.

This pattern is further highlighted in Fig. 4, where we
have magnified the nontrivial range of data sets from func-
tional flows (2). In addition, we have added data points
from the background field flow (5) using the cutoff rPT;m

for m< 5
2 . It is remarkable that these data sets display the

same pattern as the data from (2). Our results from this and
the preceding section are summarized as follows:

Extremum.—The Wilson-Polchinski (optimal flow) re-
sult in Fig. 2 corresponds to an extremum in the space of
physical observables with j!ij � j!i;optj for all obervables
in the vicinity of Oopt. The extremum is local, because the
exponents approach !i 	 2i� 1, i � 0, for very soft
(Callan-Symanzik-type) momentum cutoffs [30]. For the
eigenvalue products �n

i	0�!i=!i;opt�, the Wilson-
Polchinski extremum is a global one.

Uniqueness.—Our result indicates that the correlations
of eigenvalues at the Wilson-Pochinski result are strongest,
in the sense that any flow of the form (2) with the exponent
	�R� 	 	opt automatically also agrees with the Wilson-
Polchinski result in all other observables O�R� 	 Oopt. In
general, for 	�R�> 	opt, this is clearly not the case.

Redundancy.—The eigenvalue correlations are so strong
that the first two scaling exponents 	�R� and !�R�, for a
given R, contain enough information to fix the remaining
observables on the percent level or below. These ‘‘dynami-
cal’’ constraints point at a major redundancy of (2) with
respect to the underlying momentum cutoffs R. A relevant

Wilson-Polchinski
(optimal flow)Νρ(ν, ω)

hierarchical model

(Dyson, = 2 1/ 3)

sharp cutoff

Callan-Symanzik

0 π/ 8 π / 4 3π/ 8 π/ 2

ϕ(ν, ω)

1

2

3

4

5

6

7
rmod

ropt ,1

rmexp

(rPT )

rexp

rmix

rmix ,opt

rpower

FIG. 3 (color online). Distance N� of the pair of scaling
exponents �	;!� from the optimal Wilson-Polchinski values
�	opt; !opt� in the representation (10) and (11). Only a narrow
range of angles ’�	;!� in the vicinity of ’ 
 �=4 is achieved
by the data. Many data points are nearly degenerate. Data from
functional flows in the local potential approximation (2); same
data sets and color coding as in Fig. 2, plus further high
resolution data points from ropt;1 in the close vicinity of
�	opt; !opt�. Results from the sharp cutoff limit, the Callan-
Symanzik type flow (with Rk � k

2) and Dyson’s hierarchical
model (with ‘ 	 21=3) are also indicated (black dots). The
Wilson-Polchinski (optimal flow) result corresponds to ’ 	
’opt and N� ! 1.
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parameter has been identified previously. The gap
miny�0y�1� r� for normalized cutoffs [11], when maxi-
mized, leads towards the Wilson-Polchinski result
[12,13,30].

Optimised observables.—Previous reasonings in favor
of an optimization only invoked properties of the under-
lying flow (1), e.g. its convergence, locality, stability and
boundedness, allowing for improved physical predictions.
This has been exemplified quantitatively for the observable
	�R� which obeys 1 � 	�R� � 	opt [30], where the lower
bound 	opt is closest to the physical result [25]. Figure 2
now shows that this pattern extends to subleading eigen-
values. This equally extends to asymmetric corrections-to-
scaling [46]. Therefore, one may turn the original reason-
ing around and argue that—because of the extremum
property of the observables O�R�—an extremization of
the functional flow along the lines discussed in
[11,12,14], or similar, should naturally lead towards the
values Oopt. Stated differently, Figs. 2– 4 show that ob-
servables derived from (1) admit an optimization.

Finally, we note that the data point from Dyson’s hier-
archical model with ‘ 	 21=3 —as plotted in Figs. 3 and
4 —nicely fits into the set of data points covered by func-
tional flows, extending the link observed in Sec. V beyond
the leading exponent. This observation is addressed quan-
titatively in the following section.

VIII. MATCHING BEYOND THE LEADING
EXPONENT

To further substantiate our conjecture that hierarchical
models could be mapped onto functional flows, we have to
show quantitatively that results from hierarchical model
are reproduced by specific functional flows. Here, we study
the close vicinity of the Wilson-Polchinski result Oopt,
where the correlations are strongest, see Figs. 2 and 3.
We have to restrict our search to Dyson’s hierarchical
model, where high-accuracy data for the first subleading
scaling exponent ! is available. No subleading exponents
have been computed for Wilson’s model.

For the numerical analysis, we introduce additional
classes of momentum cutoffs R which contain the optimal
flow (3) in some limit. In addition to the two-parameter
family of cutoffs ropt;n, we also study the cutoff rcompact 	

y�1 exp��e�1=y=�b� y���b� y� for b > 0 which isC�1�,
and the cutoff rint 	 exp��y���1� y���y� b� with b 2
�0; 1, which is effective for a finite interval of momenta
q2 2 �bk2; k2. In the limit b! 0 (b! 1), the correspond-
ing flows are equivalent to (3). Hence, ropt;n, rcompact and
rint parametrize substantially different classes of cutoffs.
More generally, there are infinitely many cutoffs Rk lead-
ing to scaling exponents identical with Oopt, and the ex-
amples provided above serve to illustrate this.

At ‘ 	 1, Dyson’s hierarchical transformation is con-
tinuous, and the scaling exponents are equivalent to those
from the optimal flow (3) and the Wilson-Polchinski flow
(7). In Table I, we compare exponents from different func-
tional flows. We confirm numerically, and with high accu-
racy, that the cutoffs ropt;n, rcompact, and rint lead to the
Wilson-Polchinski result for specific parameter values.

At ‘ 	 21=3, Dyson’s hierarchical transformation is dis-
crete. The reference data reads 	DHM 	 0:649 570 and
!DHM 	 0:655 736 [22].3 These values differ only at the
order 10�5 from the optimal (Wilson-Polchinski) result,
and are therefore sufficiently close to Oopt to confirm or
refute the correlations observed in the previous section.
Figures 3 and 4 indicate that the result from Dyson’s
hierarchical model is fully matched by functional flows.
Our numerical results are given in Table II; brackets in-
dicate that a digit is possibly affected by numerical errors.
We have found several sets of parameter values, such that
the scaling exponents agree with Dyson’s model to order
10�6. More importantly, the momentum cutoffs are quite
different. Hence, our analysis also confirms the strong
correlation of scaling exponents in the immediate vicinity
of the Wilson-Polchinski result. Based on the eigenvalue
correlations within functional flows, we conjecture that the

Νρ(ν, ω)

Wilson-Polchinski
(optimal flow)

hierarchical model
(Dyson, = 2 1/ 3)

sharp cutoff

Callan-Symanzik

ν/ω
1 1.05 1.1 1.15 1.2

1

2

3

4

5

6

7
rmod

ropt ,1

rmexp

rPT

rexp

rmix

rmix ,opt

rpower

FIG. 4 (color online). Magnification of Fig. 3 in the vicinity of
’ 
 �=4 where 	=! 
 1. The data points for the distance
N��	;!� as a function of 	=! remain highly degenerate.
Same data sets and color coding as in Fig. 3, plus additional
high resolution data points from background field flows (5) using
rPT;m with m< 5

2 . Results from the sharp cutoff limit, the Callan-
Symanzik type flow (with Rk � k

2) and Dyson’s hierarchical
model (with ‘ 	 21=3) are also indicated (black dots). The
Wilson-Polchinski (optimal flow) result corresponds to
	opt=!opt 	 0:990 569 2 � � � and N� ! 1.

3In [22], high-accuracy results at ‘ 	 21=3 have been given for

 	 2	 and � 	 	! (and � 	 0� with 13 significant digits.
They imply 	DHM 	 0:649 570 365 � � � and !DHM 	
0:655 736 286 � � � . For the present study, only the first six figures
are required.
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subleading eigenvalues !i with i � 2 of Dyson’s model at
‘ 	 21=3 also agree to the corresponding accuracy with the
values implied through the functional flows in Table II.

Our results based on the proper-time flow (5) with rPT

has also been given in Table II. Full agreement is achieved
either with the exponent 	DHM or the subleading exponent
!DHM, but not with both of them. Once one of them is
matched, the deviation in the other observable is of the
order 10�5. The relevant parameters are m< 5

2 , the regime
where (5) is mapped onto (2) [39]. Therefore, the values in
Table II reflects well the range covered by standard
Wilsonian flows (2). We expect that full agreement is
achieved for proper-time flows which are linear combina-
tions of (5) for different m, but we did not attempt to do so
here.

In summary, we have provided numerical maps from
several functional flows onto Dyson’s model at a nontrivial
‘ � 1, with an accuracy of the order 10�6. The set of
achievable values for scaling exponents from functional
flows in the close vicinity of the optimal result is just wide
enough to accommodate for the data from Dyson’s model.
This is a nontrivial result, also showing that the
‘-dependence of Dyson’s model and the Rk-dependence
of functional flows are very intimately related. Based on
our results for 	 and! at ‘ � 1, and on continuity in ‘, we
expect that this map extends to other universal quantities in

the same approximation, analogous to the full map which
is known for ‘ 	 1. Data for further symmetric and asym-
metric corrections-to-scaling exponents, once available,
will allow for additional checks of this picture. Full equiva-
lence is guaranteed as soon as an explicit link in the form
‘ 	 ‘�Rk� or Rk�q2� 	 Rk�q2; ‘� is furnished. For the local
potential approximation, our results indicate that this map,
if it exists, is not unique.

IX. DISCUSSION AND CONCLUSIONS

Establishing equivalences between implementations of
Wilson’s renormalization group as different as discrete
hierarchical models of lattice scalar fields on one side
and continuous functional flows on the other, allows for
new views and insights on the respective formalisms and
on the underlying physics. Previously, equivalences were
known only in the limit where the hierarchical transforma-
tion becomes continuous. In this paper, based on similar-
ities in the dependences related to the underlying coarse-
graining, we have extended this link towards discrete
hierarchical transformations. This correspondence shows
that continuous RG flows (1) are sensitive to implicit
discretization effects via the momentum cutoff.

Specifically, for the 3d Ising universality class, we have
compared the formalisms on the level of scaling exponents.

TABLE II. Matching scaling exponents 	 and ! from discrete hierarchical transformations with functional flows. Results agree to
the order 10�6 for all cutoffs except the proper-time flow, which matches up to the order 10�5. Data from this work, and from [22].

method cutoff parameter 	 !

hierarchical model Dyson (‘ 	 21=3) 0.649 570a 0.655 736a

ropt;n (n 	 1, b 	 1:048) 0.649 570(9) 0.655 736(6)
ropt;n (n 	 1, b 	 0:9545) 0.649 570(9) 0.655 736(9)
ropt;n (n 	 1:135, b 	 1) 0.649 570(6) 0.655 736(8)
ropt;n (n 	 1:1, b 	 1:028) 0.649 570(6) 0.655 736(8)

functional RG rcompact (b 	 0:04775) 0.649 570(9) 0.655 736(9)
rint (b 	 0:944) 0.649 570(9) 0.655 736(8)
rint (b 	 0:9444) 0.649 570(7) 0.655 736(9)
rPT;m (m 	 2:499785) 0.649 564(9) 0.655 736(1)
rPT;m (m 	 2:49944) 0.649 570(1) 0.655 720(6)

aData from [22].

TABLE I. Matching scaling exponents 	 and ! from continuous hierarchical transformations with functional flows. Results agree at
least to the order 10�12. Data from this work and from [28].

method cutoff parameter 	 !

hierarchical model Dyson �‘ 	 1� 0.649 561 773 880a 0.655 745 939 193a

ropt;n (n 	 1, b 	 1) 0.649 561 773 880a 0.655 745 939 193a

functional RG rcompact (b! 0) 0.649 561 773 880 0.655 745 939 193
rint (b! 1) 0.649 561 773 880 0.655 745 939 193
rPT;m (m 	 5=2) 0.649 561 773 880a 0.655 745 939 193a

aData from [28].
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Their dependence on the step-size parameter ‘ within
Dyson’s hierarchical model (6) is qualitatively and quanti-
tatively similar to their dependence on the momentum
cutoff R within functional flows (2). In either case, scaling
exponents are bounded by the Wilson-Polchinski values
obtained for ‘! 1 and R! Ropt. Once the hierarchical
transformations are discrete, ‘ � 1, slight variations in all
known scaling exponents from Dyson’s model are matched
by functional flows with nonoptimal momentum cutoffs
R � Ropt. This is quite remarkable, particularly in view of
the strong eigenvalue correlations found amongst func-
tional flows. In this light, the optimization of functional
flows with R! Ropt can now, alternatively, be viewed as
the removal of discretization effects, at least to leading
order in a derivative expansion as studied here. It will be
interesting to contrast these findings with the construction
of improved or perfect actions on the lattice. More gener-
ally, it is conceivable that Dyson’s model for arbitrary ‘ is
mapped by functional flows on a fundamental level beyond
the numerical map provided for ‘ 	 21=3. An explicit map
would be very welcome, also in view of linking hierarch-
ical models to a path integral representation of the theory.
In Wilson’s hierarchical model (8), the range covered by
the leading scaling exponent indicates that a partial map
onto functional flows exists, though only for a restricted
domain of ‘-values. Interestingly, the overlap with back-
ground field flows is even larger. Whether these maps
extend beyond the leading exponent cannot be settled

presently due to a lack of data for subleading exponents
from Wilson’s model.

In addition, we found a distinct correlation of scaling
exponents from functional flows (2). The eigenvalue spec-
trum, a fingerprint of the physics in a local potential
approximation, is severely constrained and achieves the
Wilson-Polchinski values as an extremum. Furthermore,
the full space of physical observables is described by very
few parameters only, instead of the infinitely many mo-
ments of the momentum cutoff. Resolving this redundancy
should prove useful for studies of e.g. nontrivial momen-
tum structures and higher orders in the derivative expan-
sion. Finally this pattern amongst physical observables
highlights the extremum property of cutoffs leading to
the optimal Wilson-Polchinski result [11–14]. We expect
that the intimate link between optimized flows on one side,
and extremum points in the space of observables on the
other, persists in more complex theories. This observation
will prove useful for studies in QCD and quantum gravity,
where an appropriate optimization is even more important
to extract the relevant physics.
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