1,755 research outputs found
QUASII: QUery-Aware Spatial Incremental Index.
With large-scale simulations of increasingly detailed models and improvement of data acquisition technologies, massive amounts of data are easily and quickly created and collected. Traditional systems require indexes to be built before analytic queries can be executed efficiently. Such an indexing step requires substantial computing resources and introduces a considerable and growing data-to-insight gap where scientists need to wait before they can perform any analysis. Moreover, scientists often only use a small fraction of the data - the parts containing interesting phenomena - and indexing it fully does not always pay off. In this paper we develop a novel incremental index for the exploration of spatial data. Our approach, QUASII, builds a data-oriented index as a side-effect of query execution. QUASII distributes the cost of indexing across all queries, while building the index structure only for the subset of data queried. It reduces data-to-insight time and curbs the cost of incremental indexing by gradually and partially sorting the data, while producing a data-oriented hierarchical structure at the same time. As our experiments show, QUASII reduces the data-to-insight time by up to a factor of 11.4x, while its performance converges to that of the state-of-the-art static indexes
Collisional properties of cold spin-polarized nitrogen gas: theory, experiment, and prospects as a sympathetic coolant for trapped atoms and molecules
We report a combined experimental and theoretical study of collision-induced
dipolar relaxation in a cold spin-polarized gas of atomic nitrogen (N). We use
buffer gas cooling to create trapped samples of 14N and 15N atoms with
densities 5+/-2 x 10^{12} cm-3 and measure their magnetic relaxation rates at
milli-Kelvin temperatures. Rigorous quantum scattering calculations based on
accurate ab initio interaction potentials for the 7Sigma_u electronic state of
N2 demonstrate that dipolar relaxation in N + N collisions occurs at a slow
rate of ~10^{-13} cm3/s over a wide range of temperatures (1 mK to 1 K) and
magnetic fields (10 mT to 2 T). The calculated dipolar relaxation rates are
insensitive to small variations of the interaction potential and to the
magnitude of the spin-exchange interaction, enabling the accurate calibration
of the measured N atom density. We find consistency between the calculated and
experimentally determined rates. Our results suggest that N atoms are promising
candidates for future experiments on sympathetic cooling of molecules.Comment: 48 pages, 17 figures, 3 table
TRANSFORMERS: Robust spatial joins on non-uniform data distributions
Spatial joins are becoming increasingly ubiquitous in many applications, particularly in the scientific domain. While several approaches have been proposed for joining spatial datasets, each of them has a strength for a particular type of density ratio among the joined datasets. More generally, no single proposed method can efficiently join two spatial datasets in a robust manner with respect to their data distributions. Some approaches do well for datasets with contrasting densities while others do better with similar densities. None of them does well when the datasets have locally divergent data distributions. In this paper we develop TRANSFORMERS, an efficient and robust spatial join approach that is indifferent to such variations of distribution among the joined data. TRANSFORMERS achieves this feat by departing from the state-of-the-art through adapting the join strategy and data layout to local density variations among the joined data. It employs a join method based on data-oriented partitioning when joining areas of substantially different local densities, whereas it uses big partitions (as in space-oriented partitioning) when the densities are similar, while seamlessly switching among these two strategies at runtime. We experimentally demonstrate that TRANSFORMERS outperforms state-of-the-art approaches by a factor of between 2 and 8
Evolution of structure and local magnetic fields during crystallization of HITPERM glassy alloys studied by in situ diffraction and nuclear forward scattering of synchrotron radiation
Evolution of structure and local magnetic fields in Fe1 xCox 76Mo8Cu1B15 HITPERM metallic glass ribbons with various amounts of Co x 0, 0.25, 0.5 were studied in situ using diffraction and nuclear forward scattering of synchrotron radiation. It was found that crystallization for all three glasses proceeds in two stages. In the first stage, bcc Fe,Co nanocrystals are formed, while in the second stage additional crystalline phases evolve. For all three glasses, the crystallization temperatures at the wheel side were found to be lower than at the air side of the ribbon. The crystallization temperatures were found to decrease with increasing Co content. The lattice parameters of the bcc nanocrystals decrease up to about 550 C and then increase pointing to squeezing Mo atoms out of the nanograins or to interface effects between the nanocrystals and the glassy matrix. Nuclear forward scattering enabled separate evaluation of the contributions that stem from structurally different regions within the investigated samples including the newly formed nanocrystals and the residual amorphous matrix. Even minor Co content x 0.25 has a substantial effect not only upon the magnetic behaviour of the alloy but also upon its structure. Making use of hyperfine magnetic fields, it was possible to unveil structurally diverse positions of Fe atoms that reside in a nanocrystalline lattice with different number of Co nearest neighbour
Making Gestural Interaction Accessible to Visually Impaired People
International audienceAs touch screens become widely spread, making them more accessible to visually impaired people is an important task. Touch displays possess a poor accessibility for visually impaired people. One possibility to make them more accessible without sight is through gestural interaction. Yet, there are still few studies on using gestural interaction for visually impaired people. In this paper we present a comprehensive summary of existing projects investigating accessible gestural interaction. We also highlight the limits of current approaches and propose future working directions. Then, we present the design of an interactive map prototype that includes both a raised-line map overlay and gestural interaction for accessing different types of information (e.g., opening hours, distances). Preliminary results of our project show that basic gestural interaction techniques can be successfully used in interactive maps for visually impaired people
Formal Derivation of Concurrent Garbage Collectors
Concurrent garbage collectors are notoriously difficult to implement
correctly. Previous approaches to the issue of producing correct collectors
have mainly been based on posit-and-prove verification or on the application of
domain-specific templates and transformations. We show how to derive the upper
reaches of a family of concurrent garbage collectors by refinement from a
formal specification, emphasizing the application of domain-independent design
theories and transformations. A key contribution is an extension to the
classical lattice-theoretic fixpoint theorems to account for the dynamics of
concurrent mutation and collection.Comment: 38 pages, 21 figures. The short version of this paper appeared in the
Proceedings of MPC 201
Vibration and buckling of thin-walled composite I-beams with arbitrary lay-ups under axial loads and end moments
A finite element model with seven degrees of freedom per node is developed to study vibration and buckling of thin-walled composite I-beams with arbitrary lay-ups under constant axial loads and equal end moments. This model is based on the classical lamination theory, and accounts for all the structural coupling coming from material anisotropy. The governing differential equations are derived from the Hamilton’s principle. Numerical results are obtained for thin-walled composite I-beams to investigate the effects of axial force, bending moment and fiber orientation on the buckling moments, natural frequencies, and corresponding vibration mode shapes as well as axial-moment-frequency interaction curves
Bacterial porin disrupts mitochondrial membrane potential and sensitizes host cells to apoptosis
The bacterial PorB porin, an ATP-binding beta-barrel protein of pathogenic Neisseria gonorrhoeae, triggers host cell apoptosis by an unknown mechanism. PorB is targeted to and imported by host cell mitochondria, causing the breakdown of the mitochondrial membrane potential (delta psi m). Here, we show that PorB induces the condensation of the mitochondrial matrix and the loss of cristae structures, sensitizing cells to the induction of apoptosis via signaling pathways activated by BH3-only proteins. PorB is imported into mitochondria through the general translocase TOM but, unexpectedly, is not recognized by the SAM sorting machinery, usually required for the assembly of beta-barrel proteins in the mitochondrial outer membrane. PorB integrates into the mitochondrial inner membrane, leading to the breakdown of delta psi m. The PorB channel is regulated by nucleotides and an isogenic PorB mutant defective in ATP-binding failed to induce delta psi m loss and apoptosis, demonstrating that dissipation of delta psi m is a requirement for cell death caused by neisserial infection
- …
