23 research outputs found

    Radiogenomic Mapping of Edema/Cellular Invasion MRI-Phenotypes in Glioblastoma Multiforme

    Get PDF
    Despite recent discoveries of new molecular targets and pathways, the search for an effective therapy for Glioblastoma Multiforme (GBM) continues. A newly emerged field, radiogenomics, links gene expression profiles with MRI phenotypes. MRI-FLAIR is a noninvasive diagnostic modality and was previously found to correlate with cellular invasion in GBM. Thus, our radiogenomic screen has the potential to reveal novel molecular determinants of invasion. Here, we present the first comprehensive radiogenomic analysis using quantitative MRI volumetrics and large-scale gene- and microRNA expression profiling in GBM.Based on The Cancer Genome Atlas (TCGA), discovery and validation sets with gene, microRNA, and quantitative MR-imaging data were created. Top concordant genes and microRNAs correlated with high FLAIR volumes from both sets were further characterized by Kaplan Meier survival statistics, microRNA-gene correlation analyses, and GBM molecular subtype-specific distribution.The top upregulated gene in both the discovery (4 fold) and validation (11 fold) sets was PERIOSTIN (POSTN). The top downregulated microRNA in both sets was miR-219, which is predicted to bind to POSTN. Kaplan Meier analysis demonstrated that above median expression of POSTN resulted in significantly decreased survival and shorter time to disease progression (P<0.001). High POSTN and low miR-219 expression were significantly associated with the mesenchymal GBM subtype (P<0.0001).Here, we propose a novel diagnostic method to screen for molecular cancer subtypes and genomic correlates of cellular invasion. Our findings also have potential therapeutic significance since successful molecular inhibition of invasion will improve therapy and patient survival in GBM

    Direct association between pharyngeal viral secretion and host cytokine response in severe pandemic influenza

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Severe disease caused by 2009 pandemic influenza A/H1N1virus is characterized by the presence of hypercytokinemia. The origin of the exacerbated cytokine response is unclear. As observed previously, uncontrolled influenza virus replication could strongly influence cytokine production. The objective of the present study was to evaluate the relationship between host cytokine responses and viral levels in pandemic influenza critically ill patients.</p> <p>Methods</p> <p>Twenty three patients admitted to the ICU with primary viral pneumonia were included in this study. A quantitative PCR based method targeting the M1 influenza gene was developed to quantify pharyngeal viral load. In addition, by using a multiplex based assay, we systematically evaluated host cytokine responses to the viral infection at admission to the ICU. Correlation studies between cytokine levels and viral load were done by calculating the Spearman correlation coefficient.</p> <p>Results</p> <p>Fifteen patients needed of intubation and ventilation, while eight did not need of mechanical ventilation during ICU hospitalization. Viral load in pharyngeal swabs was 300 fold higher in the group of patients with the worst respiratory condition at admission to the ICU. Pharyngeal viral load directly correlated with plasma levels of the pro-inflammatory cytokines IL-6, IL-12p70, IFN-γ, the chemotactic factors MIP-1β, GM-CSF, the angiogenic mediator VEGF and also of the immuno-modulatory cytokine IL-1ra (p < 0.05). Correlation studies demonstrated also the existence of a significant positive association between the levels of these mediators, evidencing that they are simultaneously regulated in response to the virus.</p> <p>Conclusions</p> <p>Severe respiratory disease caused by the 2009 pandemic influenza virus is characterized by the existence of a direct association between viral replication and host cytokine response, revealing a potential pathogenic link with the severe disease caused by other influenza subtypes such as H5N1.</p

    A Longitudinal 1

    No full text

    Leakage of astrocyte-derived extracellular vesicles in stress-induced exhaustion disorder : a cross-sectional study

    No full text
    Patients with stress-induced exhaustion disorder (SED) demonstrate cognitive dysfunction similar to patients with minor traumatic brain injury (TBI). We have previously detected elevated concentrations of astrocyte-derived extracellular vesicles (EVs) in patients with TBI. As such, we hypothesized that astrocyte-derived EVs could be higher in patients with SED than in patients with major depressive disorder (MDD) and healthy controls. Patients with SED (n=31), MDD (n=31), and healthy matched controls (n=61) were included. Astrocyte-derived EVs (previously known as microparticles) were measured in plasma with flow cytometry and labeled against glial fibrillary acidic protein (GFAP) and aquaporin 4 (AQP4). In addition, platelet EVs and their CD40 ligand expression were measured. Patients with SED had significantly higher concentrations of AQP4 and GFAP-positive EVs and EVs co-expressing AQP4/GFAP than patients with MDD and healthy controls. Patients with MDD had significantly higher concentrations of GFAP-positive EVs and EVs co-expressing AQP4/GFAP than healthy controls. Platelet EVs did not differ between groups. CD40 ligand expression was significantly higher in patients with SED and MDD than in controls. In conclusion, the present study suggests that patients with SED, and to some extent, patients with MDD, have increased leakage of astrocyte-derived EVs through the blood-brain barrier
    corecore