82 research outputs found

    A Probe Placement Method for Efficient Electromagnetic Attacks

    Get PDF
    Electromagnetic (EM) emissions have been explored as an effective means for non-invasive side-channel attacks. The leaked EM field from the memory bus when the data is loaded from the on-chip memory has received considerable attention in literature. Meanwhile, off-chip memory buses gradually become the new attack target due to the relative ease of access in the modern system in package technologies, such as 2.5-D integration where processing and memory chips are integrated, for example, on a silicon interposer. This paper, therefore, investigates EM snooping attacks on interposer-based off-chip memory buses. A gradient-search algorithm is proposed to locate fast (i.e. O(N)) the most efficient attack point. The effectiveness of the search algorithm and attack efficiency is evaluated on a 64-bit bus. It is demonstrated that at the optimal attack point, EM attacks can succeed with more than 10x fewer traces, compared to placing the probe to sub-optimal locations

    TSV-Based Hairpin Bandpass Filter for 6G Mobile Communication Applications

    Get PDF

    Low-power clock distribution networks for 3-D ICs

    Get PDF
    Designing a low power clock network in synchronous circuits is an important task. This requirement is stricter for 3-D circuits due to the increased power densities. Resonant clock networks are considered efficient low-power alternatives to conventional clock distribution schemes. These networks utilize additional inductive circuits to reduce the power consumption while delivering a full swing clock signal to the sink nodes. Test is another complex task for 3-D ICs, where pre-bond test is a prerequisite. This paper, consequently, introduces a design methodology for resonant 3-D clock networks that lowers the power of the clock networks while supporting pre-bond test. Several 3-D clock network topologies are explored in a 0.18 μm CMOS technology. Simulation results indicate 43% reduction in the power consumed by the resonant 3-D clock network as compared to a conventional buffered clock network. By properly distributing the inductance within the layers of the 3-D stack, resonance is ensured both in pre-bond test and normal operation. The important aspects of this approach are introduced in this paper

    A Low-Overhead Method for Pre-bond Test of Resonant 3-D Clock Distribution Networks

    Get PDF
    Designing a low power clock network in synchronous circuits is an important task. This requirement is stricter for 3-D circuits due to the increased power densities. Resonant clock networks are considered efficient low power alternatives to con- ventional clock distribution schemes. These networks utilize ad- ditional inductive circuits to reduce power while delivering a full swing clock signal to the sink nodes. Test is another complex task for 3-D ICs, where pre-bond test is a prerequisite. Contactless test has been considered as an alternative for conventional test methods. This paper, consequently, introduces a design method- ology for resonant 3-D clock networks that supports wireless pre- bond testing through the use of inductive links. By employing the inductors comprising the LC tanks of the resonant clock net- works as the receiver circuit for the links, the need for additional circuits and/or interconnect resources during pre-bond test is essentially eliminated. The proposed technique produces low power and pre-bond testable 3-D clock distribution networks. Simulation results indicate 98.5% and 99% decrease in the area overhead and power consumed by the contactless testing method as compared to existing methods

    Angiogenesis in cancer of unknown primary: clinicopathological study of CD34, VEGF and TSP-1

    Get PDF
    BACKGROUND: Cancer of unknown primary remains a mallignancy of elusive biology and grim prognosis that lacks effective therapeutic options. We investigated angiogenesis in cancer of unknown primary to expand our knowledge on the biology of these tumors and identify potential therapeutic targets. METHODS: Paraffin embedded archival material from 81 patients diagnosed with CUP was used. Tumor histology was adenocarcinoma (77%), undifferentiated carcinoma (18%) and squamous cell carcinoma (5%). The tissue expression of CD34, VEGF and TSP-1 was assessed immunohistochemically by use of specific monoclonal antibodies and was analyzed against clinicopathological data. RESULTS: VEGF expression was detected in all cases and was strong in 83%. Stromal expression of TSP-1 was seen in 80% of cases and was strong in 20%. The expression of both proteins was not associated with any clinical or pathological parameters. Tumor MVD was higher in tumors classified as unfavorable compared to more favorable and was positively associated with VEGF and negatively with TSP-1. CONCLUSION: Angiogenesis is very active and expression of VEGF is almost universal in cancers of unknown primary. These findings support the clinical investigation of VEGF targeted therapy in this clinical setting

    Computational intelligence algorithms for risk-adjusted trading strategies.

    Get PDF
    This paper investigates the performance of trading strategies identified through Computational Intelligence techniques. We focus on trading rules derived by Genetic Programming, as well as, Generalized Moving Average rules optimized through Differential Evolution. The performance of these rules is investigated using recently proposed risk–adjusted evaluation measures and statistical testing is carried out through simulation. Overall, the moving average rules proved to be more robust, but Genetic Programming seems more promising in terms of generating higher profits and detecting novel patterns in the data

    Physical Analysis of NoC Topologies for 3-D Integrated Systems

    No full text

    Energy-Efficient Time-Based Adaptive Encoding for Off-Chip Communication

    No full text
    corecore