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LETTER 

TSV-Based Hairpin Bandpass Filter for 6G Mobile Communication 

Applications 

Fengjuan Wang1a), Lei Ke1, Xiangkun Yin2, Vasilis F. Pavlidis3, Ningmei Yu1, and Yuan Yang1 

Abstract Aimed at sixth-generation (6G) mobile communication 

applications, three fifth-order novel ultra-compact hairpin bandpass 

filter is proposed. Through-Silicon Via (TSV), a three-dimensional 

integration technology, is used to implement the arms of hairpin units, 

and some hairpin units consist of four arms. In this letter, the design 

method of the three proposed filters is introduced, and the filtering 

characteristics are verified by HFSS, an industry-grade simulator based 

on finite element method. The results reveal that the three proposed 

filter has the center frequency of 0.405 THz, 0.3915 THz, and 0.3955 

THz with bandwidth of 0.1 THz, 0.077 THz, and 0.063 THz and 

exhibits an insertion loss of 2.0 dB and return loss over 12.4 dB, 13.4 

dB, and 14 dB. The size of the three proposed filters is both 0.284 × 

0.0325 mm2 (1.29 × 0.148 λg
2). 

key words: Sixth-generation (6G) mobile communication; terahertz 

(THz) frequency band; hairpin bandpass filter; Through-silicon via 

(TSV) 

Classification: Electron devices, circuits and modules (Silicon) 

1. Introduction 

With the high demands in wireless communications, 

sixth-generation (6G) mobile communication can 

provide efficient communication, unprecedented pace, 

and ubiquitous connectivity [1-2]. Terahertz (THz) range 

can meet the increased bandwidth, improved efficiency, 

and high-reliability of 6G wireless communication [3]. 

Microstrip bandpass filters with compact size and 

lightweight need to be redesigned for high-performance 

functional in the channels of communication systems [4]. 

Microstrip hairpin filter with simple structure, and high 

integration [5-8] has widely been utilized in microstrip 

bandpass filter at below 100 GHz. However, after 

entering the THz frequency band, the transmission loss 

of the microstrip line increases sharply, which no longer 

meets the performance requirements of the filter.  

Fortunately, Through-Silicon Via (TSV) can achieve 

very good signal transmission function in the THz 

frequency band. TSV provides vertical electrical 

connections with low loss and, therefore, has been 

extensively investigated and developed [9-29]. Therefore, 

a TSV-based hairpin bandpass filter at THz band is 

meaningful for 6G mobile communication.  

The proposed filter is designed using odd-even mode 

analysis and coupling coefficient theory as described in 

Section 2. The results of the S-parameters and a 

performance comparison of relative THz bandpass filters 

are presented in Section 3. Finally, some conclusions are 

drawn in Section 4.  

2. Design of TSV-based hairpin bandpass filter 

In this section, the design method of the TSV-based four-

arm hairpin filter is described. The TSV-based hairpin 

bandpass filter is consistent in the electronic circuit 

model given in Fig. 1 and topology structure given in Fig. 

2. In this work, the substrate material in the TSV-based 

hairpin unit is assumed to be high-resistivity silicon. The 

high-resistivity silicon exhibits three important features, 

which are the dielectric constant of 11.9, dielectric 

tangent of 0.005 and resistivity of 1000 Ω•cm. The four 

types of hairpin unit is modeled in High Frequency 

Structure Simulator (HFSS) software [30], which are 

shown in Fig. 3. As depicted in Fig. 4, the three main 

structures of the fifth-order hairpin bandpass filter 

combines the input/output and internal coupling units. 

IN OUT

GND GND

LCtype1 LCtype1 LCtype1

LCtype2 LCtype2

 
Fig. 1 The circuit model.  
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Fig. 2 The topology of structure.  
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Fig. 4 Three HFSS models of hairpin filter. 

3. Simulation Results and comparison 

The parameters of the proposed filters are listed in Table 

I. And the S-parameters are shown in Fig. 5. As the 

hairpin unit with four arms increase, the in-band return 

loss will increase. But the band width of the proposed 

filter will decrease. 
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Fig. 5 The comparison between S-parameter of three HFSS models. 

A related THz hairpin filter and three related THz SIW 

filters are compared with the three proposed hairpin 

filters in Table II. With higher bandwidth, the filters in 

this work provides higher channel capacity for 

microwave signal transmission. Moreover, the size of the 

proposed hairpin filter is considerably smaller than the 

other hairpin filters, which shows that the structure of the 

proposed filters is more compact.  

     Table I. Structure parameters of proposed hairpin filter 

 Structure parameter Symbol Value (μm) 

Feeder 

Length L1 5.8 

Width W 5.1 

Height H1 4 

TSV 
Diameter D2 5.1 

Length L2 26.5 

RDL 

Length L3 54.3 

Width W 5.1 

Height H2 1 

Distance 

Adjacent TSV D1 12.3 

Signal RDL to GND RDL D3 8 

Type 1 hairpin unit to Type 2 S1 2.5 

Type 2 hairpin unit to Type 1 S2 3.6 

Table II. Comparison with different THz filters 

Filters Type 
CF 

(THz) 

BW 

(THz) 

IL 

(dB) 

RL 

(dB) 

Size 

(mm2) λg
2 

[26] Hairpin 0.12 0.02 6.9 10 0.3×0.05 0.41×0.069 

[27] SIW 0.16 0.02 1.5 10 0.9×0.325 2.25×0.81 

[28] SIW 0.14 0.023 2.4 11 1.8×0.79 2.90×1.27 

[29] SIW 0.331 0.051 1.5 15 0.68×0.21 2.59×0.80 

Model 1 

Hairpin 

0.405 0.1 2.0 12.4 0.284×0.0325 1.29×0.148 

Model 2 0.3915 0.077 2.0 13.4 0.284×0.0325 1.29×0.148 

Model 3 0.3955 0.063 2.0 14 0.284×0.0325 1.29×0.148 

4. Conclusion 

In this paper, based on TSV technology, a hairpin 

bandpass filter is first proposed for 6G mobile 

communications. The novel structure enhances the 

coupling effect and improves the returns the return loss 

characteristic in the hairpin bandpass filter. 
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