220 research outputs found

    Quantification of dynamic excitation potential of pedestrian population crossing footbridges

    Get PDF
    This is the final version. Available on open access from Hindawi via the DOI in this recordDue to their slenderness, many modern footbridges may vibrate significantly under pedestrian traffic. Consequently, the vibration serviceability of these structures under human-induced dynamic loading is becoming their governing design criterion. Many current vibration serviceability design guidelines, concerned with prediction of the vibration in the vertical direction, estimate a single response level that corresponds to an "average" person crossing the bridge with the step frequency that matches a footbridge natural frequency. However, different pedestrians have different dynamic excitation potential, and therefore could generate significantly different vibration response of the bridge structure. This paper aims to quantify this potential by estimating the range of structural vibrations (in the vertical direction) that could be induced by different individuals and the probability of occurrence of any particular vibration level. This is done by introducing the inter- and intra-subject variability in the walking force modelling. The former term refers to inability of a pedestrian to induce an exactly the same force with each step while the latter refers to different forces (in terms of their magnitude, frequency and crossing speed) induced by different people. Both types of variability are modelled using the appropriate probability density functions. The probability distributions were then implemented into a framework procedure for vibration response prediction under a single person excitation. Instead of a single response value obtained using currently available design guidelines, this new framework yields a range of possible acceleration responses induced by different people and a distribution function for these responses. The acceleration ranges estimated are then compared with experimental data from two real-life footbridges. The substantial differences in the dynamic response induced by different people are obtained in both the numerical and the experimental results presented. These results therefore confirm huge variability in different people's dynamic potential to excite the structure. The proposed approach for quantifying this variability could be used as a sound basis for development of new probability-based vibration serviceability assessment procedures for pedestrian bridges. © 2011 - IOS Press and the authors. All rights reserved.Engineering and Physical Sciences Research Council (EPSRC

    Vibration serviceability of footbridges under human-induced excitation: a literature review

    Get PDF
    issue: 1-2articleIncreasing strength of new structural materials and longer spans of new footbridges, accompanied with aesthetic requirements for greater slenderness, are resulting in more lively footbridge structures. In the past few years this issue attracted great public attention. The excessive lateral sway motion caused by crowd walking across the infamous Millennium Bridge in London is the prime example of the vibration serviceability problem of footbridges. In principle, consideration of footbridge vibration serviceability requires a characterisation of the vibration source, path and receiver. This paper is the most comprehensive review published to date of about 200 references which deal with these three key issues. The literature survey identified humans as the most important source of vibration for footbridges. However, modelling of the crowd-induced dynamic force is not clearly defined yet, despite some serious attempts to tackle this issue in the last few years. The vibration path is the mass, damping and stiffness of the footbridge. Of these, damping is the most uncertain but extremely important parameter as the resonant behaviour tends to govern vibration serviceability of footbridges. A typical receiver of footbridge vibrations is a pedestrian who is quite often the source of vibrations as well. Many scales for rating the human perception of vibrations have been found in the published literature. However, few are applicable to footbridges because a receiver is not stationary but is actually moving across the vibrating structure. During footbridge vibration, especially under crowd load, it seems that some form of human–structure interaction occurs. The problem of influence of walking people on footbridge vibration properties, such as the natural frequency and damping is not well understood, let alone quantified. Finally, there is not a single national or international design guidance which covers all aspects of the problem comprehensively and some form of their combination with other published information is prudent when designing major footbridge structures. The overdue update of the current codes to reflect the recent research achievements is a great challenge for the next 5–10 years

    Validation of the CFD code Flow-3D for the free surface flow around the ships’ hulls

    Get PDF
    This paper describes the Computational Fluid Dynamics (CFD) calculations that were completed to model the free surface flow around the ships’ hulls. Published experimental data for the DTRC 5415 combatant model is commonly used for validation of numerical codes. Simulations were performed using the software Flow-3D, a Reynold’s Averaged Navier-Stokes (RANS) solver with structured orthogonal mesh. The verification was based on the examination of the flow around the hull for range of speeds and by comparison of the results for resistance obtained by CFD simulations and by experiments. Additional analysis has been conducted to investigate mesh sensitivity and the implementation of different advection schemes. The second order advection scheme with monotonicity preserving was optimal for the qualitative analysis of the problem under consideration. This study shows that CFD code Flow-3D has a limited capability to resolve the physics of the flow around the hull. The shape of the free surface and wave distributions around the hull corresponds approximately to the experimental observations. For quantitative analysis of ship total resistance, Flow-3D shows a lack of accuracy. It appears that the code does not have the capability to properly resolve boundary layer on the hull and properly predict frictional resistance. It can be improved by using only dynamic pressure results and by using some established empirical/experimental approach for estimating frictional resistance. The multi-block grids and the different turbulent models are being used to obtain valid numerical results that are crucial for making sound design decision

    Effect of group walking traffic on dynamic properties of pedestrian structures

    Get PDF
    The increasing number of reported vibration serviceability problems in newly built pedestrian structures, such as footbridges and floors, under walking load has attracted considerable attention in the civil engineering community over the past two decades. The key design challenges are: the inter- and intra-subject variability of walking people, the unknown mechanisms of their interaction with the vibrating walking surfaces and the synchronisation between individuals in a group. Ignoring all or some of these factors makes the current design methods an inconsistent approximation of reality. This often leads to considerable over- or under-estimation of the structural response, yielding an unreliable assessment of vibration performance. Changes to the dynamic properties of an empty structure due to the presence of stationary people have been studied extensively over the past two decades. The understanding of the similar effect of walking people on laterally swaying bridges has improved tremendously in the past decade, due to considerable research prompted by the Millennium Bridge problem. However, there is currently a gap in knowledge about how moving pedestrians affect the dynamic properties of vertically vibrating structures. The key reason for this gap is the scarcity of credible experimental data pertinent to moving pedestrians on vertically vibrating structures, especially for multi-pedestrian traffic. This paper addresses this problem by studying the dynamic properties of the combined human-structure system, i.e. occupied structure damping ratio, natural frequency and modal mass. This was achieved using a comprehensive set of frequency response function records, measured on a full-scale test structure, which was occupied by various numbers of moving pedestrians under different walking scenarios. Contrary to expectations, it was found that the natural frequency of the joint moving human-structure system was higher than that of the empty structure, while it was lower when the same people were standing still. The damping ratio of the joint human-structure system was considerably higher than that of the empty structure for both the walking and standing people – in agreement with previous reports for stationary people - and was more prominent for larger groups. Interestingly, it was found that the walking human-structure system has more damping compared with the equivalent standing human-structure system. The properties of a single degree of freedom mass-spring-damper system representing a moving crowd needed to replicate these observations have been identified

    A New Proxy Measurement Algorithm with Application to the Estimation of Vertical Ground Reaction Forces Using Wearable Sensors

    Get PDF
    Measurement of the ground reaction forces (GRF) during walking is typically limited to laboratory settings, and only short observations using wearable pressure insoles have been reported so far. In this study, a new proxy measurement method is proposed to estimate the vertical component of the GRF (vGRF) from wearable accelerometer signals. The accelerations are used as the proxy variable. An orthogonal forward regression algorithm (OFR) is employed to identify the dynamic relationships between the proxy variables and the measured vGRF using pressure-sensing insoles. The obtained model, which represents the connection between the proxy variable and the vGRF, is then used to predict the latter. The results have been validated using pressure insoles data collected from nine healthy individuals under two outdoor walking tasks in non-laboratory settings. The results show that the vGRFs can be reconstructed with high accuracy (with an average prediction error of less than 5.0%) using only one wearable sensor mounted at the waist (L5, fifth lumbar vertebra). Proxy measures with different sensor positions are also discussed. Results show that the waist acceleration-based proxy measurement is more stable with less inter-task and inter-subject variability than the proxy measures based on forehead level accelerations. The proposed proxy measure provides a promising low-cost method for monitoring ground reaction forces in real-life settings and introduces a novel generic approach for replacing the direct determination of difficult to measure variables in many applications

    Neural Networks and Particle Swarm Optimization for Function Approximation in Tri-SWACH Hull Design

    Get PDF
    Tri-SWACH is a novel multihull ship design that is well suited to a wide range of industrial, commercial, and military applications, but which because of its novelty has few experimental studies on which to base further development work. Using a new form of particle swarm optimization that incorporates a strong element of stochastic search, Breeding PSO, it is shown it is possible to use multilayer nets to predict resistance functions for Tri-SWACH hullforms, including one function, the Residual Resistance Coefficient, which was found intractable with previously explored neural network training methods

    Constitutive phosphorylation of MDC1 physically links the MRE11–RAD50–NBS1 complex to damaged chromatin

    Get PDF
    The MRE11–RAD50–Nijmegen breakage syndrome 1 (NBS1 [MRN]) complex accumulates at sites of DNA double-strand breaks (DSBs) in microscopically discernible nuclear foci. Focus formation by the MRN complex is dependent on MDC1, a large nuclear protein that directly interacts with phosphorylated H2AX. In this study, we identified a region in MDC1 that is essential for the focal accumulation of the MRN complex at sites of DNA damage. This region contains multiple conserved acidic sequence motifs that are constitutively phosphorylated in vivo. We show that these motifs are efficiently phosphorylated by caseine kinase 2 (CK2) in vitro and directly interact with the N-terminal forkhead-associated domain of NBS1 in a phosphorylation-dependent manner. Mutation of these conserved motifs in MDC1 or depletion of CK2 by small interfering RNA disrupts the interaction between MDC1 and NBS1 and abrogates accumulation of the MRN complex at sites of DNA DSBs in vivo. Thus, our data reveal the mechanism by which MDC1 physically couples the MRN complex to damaged chromatin

    Emergence of fluoroquinolone-resistant Campylobacter jejuni and Campylobacter coli among Australian chickens in the absence of fluoroquinolone use

    Get PDF
    In a structured survey of all major chicken-meat producers in Australia, we investigated the antimicrobial resistance (AMR) and genomic characteristics of Campylobacter jejuni (n = 108) and C. coli (n = 96) from cecal samples of chickens at slaughter (n = 200). The majority of the C. jejuni (63%) and C. coli (86.5%) samples were susceptible to all antimicrobials. Fluoroquinolone resistance was detected among both C. jejuni (14.8%) and C. coli (5.2%), although this only included three sequence types (STs) and one ST, respectively. Multidrug resistance among strains of C. jejuni (0.9%) and C. coli (4.1%) was rare, and fluoroquinolone resistance, when present, was never accompanied by resistance to any other agent. Comparative genome analysis demonstrated that Australian isolates were found dispersed on different branches/clusters within the international collection. The major fluoroquinolone-resistant STs of C. jejuni (ST7323, ST2083, and ST2343) and C. coli (ST860) present in Australian chickens were similar to those of international isolates and have been reported previously in humans and animals overseas. The detection of a subpopulation of Campylobacter isolates exclusively resistant to fluoroquinolone was unexpected since most critically important antimicrobials such as fluoroquinolones are excluded from use in Australian livestock. A number of factors, including the low level of resistance to other antimicrobials, the absence of fluoroquinolone use, the adoption of measures for preventing spread of contagion between flocks, and particularly the genomic identities of isolates, all point to humans, pest species, or wild birds as being the most plausible source of organisms. This study also demonstrates the need for vigilance in the form of surveillance for AMR based on robust sampling to manage AMR risks in the food chain

    Utility of biotechnology based decision making tools in postharvest grain pest management: An Australian case study

    Get PDF
    A major concern for the Australian grain industry in recent years is the constant threat of resistance to the key disinfestant phosphine in a range of stored grain pests. The need to maintain the usefulness of phosphine and to contain the development of resistance are critical to international market access for Australian grain. Strong levels of resistance have already been established in major pests including the lesser grain borer, Rhyzopertha dominica (F.), the red flour beetle, Tribolium castaneum (Herbst), and most recently in the rusty grain beetle Cryptolestes ferrugineus (Stephens). As a proactive integrated resistance management strategy, new fumigation protocols are being developed in the laboratory and verified in large-scale field trials in collaboration with industry partners. To aid this development, we have deployed advanced molecular diagnostic tools to accurately determine the strength and frequency of key phosphine resistant insect pests and their movement within a typical Australian grain value chain. For example, two major bulk storage facilities based at Brookstead and Millmerran in southeast Queensland, Australia, were selected as main nodes and several farms and feed mills located in and around these two sites at a scale of 25 to 100 km radius were selected and surveyed. We determined the type, pattern, frequency as well as the distribution of resistance alleles accurately for two major pests, R. dominica and T. castaneum. Overall, this information along with the phenotypic data, provide a basis for designing key intervention strategies in managing resistance problems in the study area.A major concern for the Australian grain industry in recent years is the constant threat of resistance to the key disinfestant phosphine in a range of stored grain pests. The need to maintain the usefulness of phosphine and to contain the development of resistance are critical to international market access for Australian grain. Strong levels of resistance have already been established in major pests including the lesser grain borer, Rhyzopertha dominica (F.), the red flour beetle, Tribolium castaneum (Herbst), and most recently in the rusty grain beetle Cryptolestes ferrugineus (Stephens). As a proactive integrated resistance management strategy, new fumigation protocols are being developed in the laboratory and verified in large-scale field trials in collaboration with industry partners. To aid this development, we have deployed advanced molecular diagnostic tools to accurately determine the strength and frequency of key phosphine resistant insect pests and their movement within a typical Australian grain value chain. For example, two major bulk storage facilities based at Brookstead and Millmerran in southeast Queensland, Australia, were selected as main nodes and several farms and feed mills located in and around these two sites at a scale of 25 to 100 km radius were selected and surveyed. We determined the type, pattern, frequency as well as the distribution of resistance alleles accurately for two major pests, R. dominica and T. castaneum. Overall, this information along with the phenotypic data, provide a basis for designing key intervention strategies in managing resistance problems in the study area

    Utility of biotechnology based decision making tools in postharvest grain pest management: an Australian case study

    Get PDF
    A major concern for the Australian grain industry in recent years is the constant threat of resistance to the key disinfectant phosphine in a range of stored grain pests. The need to maintain the usefulness of phosphine and to contain the development of resistance are critical to international market access for Australian grain. Strong levels of resistance have already been established in major pests including the lesser grain borer, Rhyzopertha dominica (F.), the red flour beetle, Tribolium castaneum (Herbst), and most recently in the rusty grain beetle Cryptolestes ferrugineus (Stephens). As a proactive integrated resistance management strategy, new fumigation protocols are being developed in the laboratory and verified in large-scale field trials in collaboration with industry partners. To aid this development, we have deployed advanced molecular diagnostic tools to accurately determine the strength and frequency of key phosphine resistant insect pests and their movement within a typical Australian grain value chain. For example, two major bulk storage facilities based at Brookstead and Millmerran in southeast Queensland, Australia, were selected as main nodes and several farms and feed mills located in and around these two sites at a scale of 25 to 100 km radius were selected and surveyed. We determined the type, pattern, frequency as well as the distribution of resistance alleles accurately for two major pests, R. dominica and T. castaneum. Overall, this information along with the phenotypic data, provide a basis for designing key intervention strategies in managing resistance problems in the study area
    corecore