8 research outputs found

    Synergistic Interaction of 5-HT<sub>1B</sub> and 5-HT<sub>2B</sub> Receptors in Cytoplasmic Ca<sup>2+</sup> Regulation in Human Umbilical Vein Endothelial Cells: Possible Involvement in Pathologies

    No full text
    The aim of this work was to explore the involvement of 5-HT1B and 5-HT2B receptors (5-HT1BR and 5-HT2BR) in the regulation of free cytoplasmic calcium concentration ([Ca2+]i) in human umbilical vein endothelial cells (HUVEC). We have shown by quantitative PCR analysis, that 5-HT1BR and 5-HT2BR mRNAs levels are almost equal in HUVEC. Immunofluorescent staining demonstrated, that 5-HT1BR and 5-HT2BR are expressed both in plasma membrane and inside the cells. Intracellular 5-HT1BR are localized mainly in the nuclear region, whereas 5-HT2BR receptors are almost evenly distributed in HUVEC. 5-HT, 5-HT1BR agonist CGS12066B, or 5-HT2BR agonist BW723C86 added to HUVEC caused a slight increase in [Ca2+]i, which was much lower than that of histamine, ATP, or SFLLRN, an agonist of protease-activated receptors (PAR1). However, activation of 5-HT1BR with CGS12066B followed by activation of 5-HT2BR with BW723C86 manifested a synergism of response, since several-fold higher rise in [Ca2+]i occurred. CGS12066B caused more than a 5-fold increase in [Ca2+]i rise in HUVEC in response to 5-HT. This 5-HT induced [Ca2+]i rise was abolished by 5-HT2BR antagonist RS127445, indicating that extracellular 5-HT acts through 5-HT2BR. Synergistic [Ca2+]i rise in response to activation of 5-HT1BR and 5-HT2BR persisted in a calcium-free medium. It was suppressed by the phospholipase C inhibitor U73122 and was not inhibited by the ryanodine and NAADP receptors antagonists dantrolene and NED-19. [Ca2+]i measurements in single cells demonstrated that activation of 5-HT2BR alone by BW723C86 caused single asynchronous [Ca2+]i oscillations in 19.8 ± 4.2% (n = 3) of HUVEC that occur with a long delay (66.1 ± 4.3 s, n = 71). On the contrary, histamine causes a simultaneous and almost immediate increase in [Ca2+]i in all the cells. Pre-activation of 5-HT1BR by CGS12066B led to a 3–4 fold increase in the number of HUVEC responding to BW723C86, to synchronization of their responses with a delay shortening, and to the bursts of [Ca2+]i oscillations in addition to single oscillations. In conclusion, to get a full rise of [Ca2+]i in HUVEC in response to 5-HT, simultaneous activation of 5-HT1BR and 5-HT2BR is required. 5-HT causes an increase in [Ca2+]i via 5-HT2BR while 5-HT1BR could be activated by the membrane-permeable agonist CGS12066B. We hypothesized that CGS12066B acts via intracellular 5-HT1BR inaccessible to extracellular 5-HT. Intracellular 5-HT1BR might be activated by 5-HT which could be accumulated in EC under certain pathological conditions

    VAS2870 Inhibits Histamine-Induced Calcium Signaling and vWF Secretion in Human Umbilical Vein Endothelial Cells

    No full text
    In this study, we investigated the effects of NAD(P)H oxidase (NOX) inhibitor VAS2870 (3-benzyl-7-(2-benzoxazolyl)thio-1,2,3-triazolo[4,5-d]pyrimidine) on the histamine-induced elevation of free cytoplasmic calcium concentration ([Ca2+]i) and the secretion of von Willebrand factor (vWF) in human umbilical vein endothelial cells (HUVECs) and on relaxation of rat aorta in response to histamine. At 10 &#956;M concentration, VAS2870 suppressed the [Ca2+]i rise induced by histamine. Inhibition was not competitive, with IC50 3.64 and 3.22 &#956;M at 1 and 100 &#956;M concentrations of histamine, respectively. There was no inhibition of [Ca2+]i elevation by VAS2870 in HUVECs in response to the agonist of type 1 protease-activated receptor SFLLRN. VAS2870 attenuated histamine-induced secretion of vWF and did not inhibit basal secretion. VAS2870 did not change the degree of histamine-induced relaxation of rat aortic rings constricted by norepinephrine. We suggest that NOX inhibitors might be used as a tool for preventing thrombosis induced by histamine release from mast cells without affecting vasorelaxation

    A Moderate Decrease in ADAMTS13 Activity Correlates with the Severity of STEC-HUS

    No full text
    Atypical hemolytic uremic syndrome (HUS) develops as a result of damage to the endothelium of microvasculature vessels by Shiga toxin produced by enterohemorrhagic Escherichia coli (STEC-HUS). STEC-HUS remains the leading cause of acute kidney injury (AKI) in children aged 6 months to 5 years. The pathomorphological essence of the disease is the development of thrombotic microangiopathy (TMA). One of the key causes of TMA is an imbalance in the ADAMTS13–von Willebrand factor (vWF)–platelet system. The goal of the work was to clarify the role of a moderate decrease in ADAMTS13 activity in the pathogenesis of STEC-HUS. The activity of ADAMTS13 was determined in 138 children (4 months–14.7 years) in the acute period of STEC-HUS and the features of the course of the disease in these patients were analyzed. The study revealed a decrease in the activity and concentration of ADAMTS13 in 79.8% and 90.6% of patients, respectively. Measurements of von Willebrand factor antigen content and the activity of von Willebrand factor in the blood plasma of part of these patients were carried out. In 48.6% and 34.4% of cases, there was an increase in the antigen concentration and the activity of the Willebrand factor, respectively. Thrombocytopenia was diagnosed in 97.8% of children. We have demonstrated that moderately reduced ADAMTS13 activity correlates with the risk of severe manifestations of STEC-HUS in children; the rate of developing multiple organ failure, cerebral disorders, pulmonary edema, and acute kidney injury with the need for dialysis increases. It is assumed that reduction in ADAMTS13 activity may serve as a predictor of disease severity

    Albumin Is a Component of the Esterase Status of Human Blood Plasma

    No full text
    The esterase status of blood plasma can claim to be one of the universal markers of various diseases; therefore, it deserves attention when searching for markers of the severity of COVID-19 and other infectious and non-infectious pathologies. When analyzing the esterase status of blood plasma, the esterase activity of serum albumin, which is the major protein in the blood of mammals, should not be ignored. The purpose of this study is to expand understanding of the esterase status of blood plasma and to evaluate the relationship of the esterase status, which includes information on the amount and enzymatic activity of human serum albumin (HSA), with other biochemical parameters of human blood, using the example of surviving and deceased patients with confirmed COVID-19. In experiments in vitro and in silico, the activity of human plasma and pure HSA towards various substrates was studied, and the effect of various inhibitors on this activity was tested. Then, a comparative analysis of the esterase status and a number of basic biochemical parameters of the blood plasma of healthy subjects and patients with confirmed COVID-19 was performed. Statistically significant differences have been found in esterase status and biochemical indices (including albumin levels) between healthy subjects and patients with COVID-19, as well as between surviving and deceased patients. Additional evidence has been obtained for the importance of albumin as a diagnostic marker. Of particular interest is a new index, [Urea] × [MDA] × 1000/(BChEb × [ALB]), which in the group of deceased patients was 10 times higher than in the group of survivors and 26 times higher than the value in the group of apparently healthy elderly subjects
    corecore