149 research outputs found

    Evidence for topological band inversion of the phase change material Ge2Sb2Te5

    Get PDF
    We present an angle-resolved photoemission study of a ternary phase change material, namely Ge2Sb2Te5, epitaxially grown on Si(111) in the metastable cubic phase. The observed upper bulk valence band shows a minimum at Gamma-bar being 0.3 eV below the Fermi level E_F and a circular Fermi contour around Gamma-bar with a dispersing diameter of 0.27-0.36 Anstroms^-1. This is in agreement with density functional theory calculations of the Petrov stacking sequence in the cubic phase which exhibits a topological surface state. The topologically trivial cubic KH stacking shows a valence band maximum at Gamma in line with all previous calculations of the hexagonal stable phase exhibiting the valence band maximum at Gamma for a trivial Z_2 topological invariant nu_0 and away from Gamma for non-trivial nu_0. Scanning tunneling spectroscopy exhibits a band gap of 0.4 eV around E_F

    Effects of Ultrashort Pulsed Direct Laser Writing on Ni/Al Reactive Multilayer Foils

    Get PDF
    Reactive multilayer foils (RMFs) for joining processes have attracted a great deal of attention over the last few years. They are capable of exothermic self-propagating reactions and can serve as localized heat sources for joining applications when ignited by suitable means. Using short and ultrashort pulsed lasers with carefully selected parameters, cutting and shaping of RMFs makes it possible to tailor heat release characteristics without triggering the reaction. The present study is an investigation of microstructural changes induced by femtosecond laser machining of a commercially available Ni/Al-based RMF. The effects of the specific laser parameters pulse duration and repetition rate on the heat-affected zone (HAZ) are investigated by scanning and transmission electron microscopy. Debris consisting of oxide deposits can be found at a distance of several tens of microns from the cut edge. A negligible HAZ extending to less than 100 nm was observed for all parameters tested and no signs of ignition of a self-propagating reaction were observed. These results underline the suitability of femtosecond lasers for metal machining with minimal heat input

    Sub-nm wide electron channels protected by topology

    Full text link
    Helical locking of spin and momentum and prohibited backscattering are the key properties of topologically protected states. They are expected to enable novel types of information processing such as spintronics by providing pure spin currents, or fault tolerant quantum computation by using the Majorana fermions at interfaces of topological states with superconductors. So far, the required helical conduction channels used to realize Majorana fermions are generated through application of an axial magnetic field to conventional semiconductor nanowires. Avoiding the magnetic field enhances the possibilities for circuit design significantly. Here, we show that sub-nanometer wide electron channels with natural helicity are present at surface step-edges of the recently discovered topological insulator Bi14Rh3I9. Scanning tunneling spectroscopy reveals the electron channels to be continuous in both energy and space within a large band gap of 200 meV, thereby, evidencing its non-trivial topology. The absence of these channels in the closely related, but topologically trivial insulator Bi13Pt3I7 corroborates the channels' topological nature. The backscatter-free electron channels are a direct consequence of Bi14Rh3I9's structure, a stack of 2D topologically insulating, graphene-like planes separated by trivial insulators. We demonstrate that the surface of Bi14Rh3I9 can be engraved using an atomic force microscope, allowing networks of protected channels to be patterned with nm precision.Comment: 17 pages, 4 figures, and supplementary material, Nature Physics in pres

    Age-related macular degeneration associated polymorphism rs10490924 in ARMS2 results in deficiency of a complement activator

    Get PDF
    Acknowledgements: The authors thank all German AMD patients for their participation. We also thank Maria Pötsch (Leibniz Institute for Natural Product Reseach and Infection Biology, Jena) for MS analyses. Funding: This research was supported by the German Council “Deutsche Forschungs-Gemeinschaft” SK46, Zi432, LA1206, the “Pro Retina” foundation and the Thuringian Ministry of Science and Education, Germany. HN is a member of the DFG-funded excellence cluster ImmunoSensation (EXC 1023). YL is a doctoral researcher at the International Leibniz Research School (ILRS), part of the Jena school of Microbial Communication (JSMC). Availability of data and materials: Materials are available at [email protected] reviewedPublisher PD
    • 

    corecore