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We present an angle-resolved photoemission study of a ternary phase change material, namely

Ge2Sb2Te5, epitaxially grown on Si(111) in the metastable cubic phase. The observed upper bulk

valence band shows a minimum at �C being 0.3 eV below the Fermi level EF and a circular Fermi

contour around �C with a dispersing diameter of 0.27–0.36 Å�1. This is in agreement with density

functional theory calculations of the Petrov stacking sequence in the cubic phase which exhibits a

topological surface state. The topologically trivial cubic Kooi-De Hosson stacking shows a

valence band maximum at C in line with all previous calculations of the hexagonal stable phase

exhibiting the valence band maximum at C for a trivial Z2 topological invariant �0 and away from

C for non-trivial �0. Scanning tunneling spectroscopy exhibits a band gap of 0.4 eV around EF.
VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4847715]

Following the proposal1,2 and discovery3,4 of topologi-

cal insulators (TIs), materials are currently optimized in

terms of separating the Dirac cone from bulk bands and tun-

ing the Dirac point close to the Fermi energy EF. In this

course, compounds involving more than two elements are

preferentially used since they offer more degrees of free-

dom.5,6 Connecting such compounds to classes of materials

already in use for electronic or storage applications is desira-

ble towards the utilization of topological properties. An im-

portant material system for commercially used optical and

non-volatile electrical data storage is phase change materials

(PCMs),7,8 which are found predominantly along the pseudo-

binary line connecting GeTe and Sb2Te3.9

Such PCMs exhibit a large contrast in electronic and opti-

cal properties upon changing from amorphous to crystal-

line.10,11 Using laser-induced or electrical heat pulses, the

switching occurs within nanoseconds12 or below13 at an

energy cost of only 1 fJ.14 The PCM Sb2Te3 is experimentally

known to be a TI15–17 and some of the other compounds on

the pseudobinary line are predicted to be TIs based on density

functional theory (DFT) calculations.5,18–21 Ge2Sb2Te5

(GST-225) is at the borderline of these predictions,19,21 i.e., its

TI properties depend on the stacking sequence.21 Here, we

present experimental evidence for the non-trivial topology of

GST-225 by angle-resolved photoemission spectroscopy

(ARPES), supported by DFT calculations. The result implies

that half of the pseudobinary line consists of TIs and opens up

the perspective for fast and reversible switching between a

crystalline topological phase and an insulating amorphous

phase.

GST-225, a prototype PCM, emerges in two slightly dif-

ferent crystalline phases, a metastable cubic one used for

applications22 and a stable hexagonal one. Within the stable

phase, hexagonal layers are stacked along [0001] with a

sequence deduced from transmission electron microscopy

(TEM) to be either Te-Sb-Te-Ge-Te-v-Te-Ge-Te-Sb-

(Petrov phase)23 or Te-Ge-Te-Sb-Te-v-Te-Sb-Te-Ge- (Kooi-

De Hosson or KH phase).24 The v denotes a vacancy layer,

where adjacent Te layers are van-der-Waals bonded. DFT

calculations imply that the KH phase is energetically favor-

able.25 More recent X-ray diffraction data suggest some mix-

ture of Ge and Sb in the respective layers.26 The cubic

rocksalt structure exhibits hexagonal layers stacked along

[111] with (Te–Ge/Sb/v)3 sequence, where Ge/Sb/v is a

mixed layer of Ge, Sb, and vacancies.26,27 More recent TEM

studies suggest that the Ge/Sb/v layers exhibit some internal

order28 and DFT even implies that Ge, Sb, and vacancies

accumulate in separate layers.25 Thus, the stable and the met-

astable phase could be much closer than originally antici-

pated. Then, the transition between them would be a mere

shift of blocks of (111) layers without atomic rearrangements

within the layers.25

The first prediction of topologically insulating GST-225

was made by Kim et al. for the Petrov phase while the ener-

getically favorable KH phase was shown to be topologically

trivial.18 However, even the KH phase of GST-225 can be

made a TI by DFT if set under isotropic pressure29 or strain.30

A more disordered, hexagonal mixed-layer phase was investi-

gated by Silkin et al. by DFT with the stacking sequence Te-

M1-Te-M2-Te-v-Te-M2-Te-M1- having Ge2xSb2(1�x) in M1

and Ge2(1�x)Sb2x in M2.21 The transition between the Petrov

(x¼ 0) and the KH (x¼ 1) phase exhibits a semimetal for the

Petrov phase, a trivial band insulator for x¼ 1 and x¼ 0.75,

and a topological insulator for x¼ 0.25 and x¼ 0.5.

Importantly, all DFT calculations of GST-225 exhibiting

the valence band maximum (VBM) away from C show topo-

logically non-trivial properties.18,19,21,29,30 The only excep-

tion is the Petrov phase calculated by Silkin et al. which is
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semimetallic.21 This empirical relation is our central argu-

ment in the following.

So far, there have been no calculations including spin-

orbit coupling for the metastable rocksalt phase. We will

provide them for the Petrov and KH stacking, confirming the

above trend. To ease the comparison of our data also with

previous calculations, we stick to the hexagonal nomencla-

ture also for the metastable cubic phase, identifying the cubic

[111] with the hexagonal [0001] direction.

In order to study TI properties by ARPES, ideally single

crystalline GST is desired. Typically, GST is deposited in a

polycrystalline fashion by physical vapor deposition. Only

recently, epitaxial films of superior crystalline quality have

been grown molecular beam epitaxy (MBE) on GaSb, InAs,

and Si.31–35 The metastable cubic, rhombohedrally distorted

GST-225 grows with a single vertical epitaxial orientation,

well defined interfaces, and atomically flat terraces only on

(111)-oriented substrates.31,32

The GST-225 layers were grown on Si(111) in an MBE

machine dedicated to chalcogenides.36 The temperature of

the effusion cells was set such that the flux ratio of Ge:Sb:Te

is close to 2:2:5, as confirmed by X-ray fluorescence.31,32

Out-of-plane and grazing incidence X-ray diffraction (XRD)

shows that GST grows in the metastable cubic phase along

the [111] direction. The presence of superstructure peaks in

addition to the Bragg reflections of cubic GST-225 indicates

vacancy ordering in the Ge/Sb/v sublattice along the growth

direction. The film thickness was 20 nm, and the growth tem-

perature was 250 �C.

After growth, the samples have been transferred under

ambient conditions. Before insertion into the ultrahigh vac-

uum ARPES or scanning tunneling microscopy (STM)

chambers, the surface was deoxidized by dipping in de-

ionized (DI) water for 1 min following the procedure of

Zhang et al.37 Afterwards, the sample was introduced within

2 min and, after pump-down, annealed to 250 �C yielding a

clean crystalline, stoichiometric, and oxygen-free surface.36

XRD data confirm that neither this procedure nor the subse-

quent measurements change the phase of the GST-225.

The topography was investigated by atomic force mi-

croscopy (AFM) on a lm scale and by STM on the nm scale.

The AFM topography (Fig. 1(a)) exhibits an overall rough-

ness of 3–4 nmrms due to pyramids with 5–15 nm in height

and a width close to 1 lm. On their slopes, atomically flat

terraces up to 100 nm in width are found (Fig. 1(c)). These

terraces are separated by steps of 0.34 6 0.01 nm in height,

in agreement with the expected Te-Te layer distance of

0.347 nm in cubic GST-225.38 On the terraces, atomic

resolution is achieved by STM (Fig. 1(d)), most likely show-

ing the Te layer.39 Scanning tunneling spectroscopy (STS)

shows a band gap of 0.4 eV with EF situated at the top of the

valence band (Fig. 1(b)).

ARPES measurements have been performed at the beam-

line UE112-lowE-PGM2 (12) at BESSY II using a Scienta

R8000 analyzer. Figure 2(a) displays a spectrum recorded

with linearly polarized light at h� ¼ 22 eV in a direction

determined to be �C � �K by comparison with DFT calcula-

tions.36 Just below EF, the upper valence band shows maxima

at kk ¼ 60:1460:02 Å
�1

and drops to E�EF¼�0.3 eV at
�C. Another band resides between �0.7 eV at kk ¼ 60:23 Å

�1

and �0.35 eV at kk ¼ 60:1 Å
�1

. Closer to �C, these two bands

lead to a broad peak in energy distribution curves (EDCs)

around �0.4 eV with a FWHM of 0.5 eV (Fig. 3(a)). Below

�1 eV, there are two more hole-like bands. The �C � �M direc-

tion looks essentially the same with slightly more intensity at

even higher jkj values.36 This can be seen from the constant

energy cut at EF in Fig. 2(b), showing a nearly isotropic circle

and faint additional intensity at high jkj values in the six dif-

ferent �C � �M directions.

DFT calculations have been performed within in the

generalized gradient approximation.40 We employed the

full-potential linearized augmented planewave method in

bulk and thin-film geometry41 as implemented in the FLEUR

FIG. 1. Scanning probe microscopy of metastable GST-225 (111) after DI

water dip. (a) Tapping mode AFM under ambient conditions. Inset: profile

along the line marked in the image. (b) STS curve recorded in UHV (aver-

age of 10 spectra). Red/light shaded (blue/darker) area marks the valence

(conduction) band. Stabilization at Vsample¼�0.8 V, I¼ 100 pA. (c) STM

image of atomically flat terraces. Average step height: 0.34 nm.

Vsample¼�0.3 V, I¼ 100 pA. (d) STM image with atomic resolution (inset:

zoom). Vsample¼�0.5 V, I¼ 100 pA. All data are taken at room

temperature.

FIG. 2. ARPES spectra of metastable GST-225 (111) after DI water dip: (a)

recorded in �C � �K direction (see Ref. 36, Shirley-type background sub-

tracted), (b) intensity in the kk plane at EF, �C � �M direction is horizontal;

photon energy: 22 eV, temperature: 300 K.

243109-2 Pauly et al. Appl. Phys. Lett. 103, 243109 (2013)
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code.36 Spin-orbit coupling was included self-consistently,

and a basis set cutoff of RMT kmax¼ 9 was used. As structural

model for the cubic phases we adopted the atomic positions

given by Sun et al.,25 both for the bulk and film structures.

For the latter, films consisting of 27 atomic layers terminat-

ing by a “vacancy layer” were used. Two different stacking

sequences were assumed for the cubic phase: a Petrov- and a

KH-like sequence, which are derived from the respective

hexagonal phases by tripling the unit cell and adding appro-

priate shifts.

Figure 4 shows the 2nd derivative of the measured band

structure along with the calculations. A reasonable agree-

ment is only achieved with the Petrov-like stacking, includ-

ing the minimum at �C of the upper valence band. The bands

further down in energy (around �0.6 eV at �C) can be associ-

ated with a Rashba-type surface state, similar to the one

observed in Sb2Te3.17 In close vicinity of the upper valence

band, the calculation shows the topological surface state

crossing the Fermi energy at kk � 0:12 Å
�1

. This state obvi-

ously overlaps with the upper bulk valence band within our

ARPES data.

In order to probe different kz and, thus, distinguish sur-

face from bulk states, spectra with h� ¼ 17� 26 eV have

been recorded.36 Corresponding EDCs at �C are shown in

Fig. 3(a). The topmost maximum shifts down by about

0.2 eV between h� ¼ 22 eV and 26 eV, indicating a kz

dispersion, as expected for a band with bulk character. The

kk-position of the VBM has been evaluated by means of the

2nd derivative of the ARPES spectra: the EDC with the peak

at the highest energy is chosen, and the corresponding kk
value is taken as kk;max.36 Figure 3(b) displays kk;max as a

function of photon energy revealing a small dependence on

kz as well. Thus, the ARPES peak at the VBM is, at least par-

tially, a bulk band with dispersion in kz direction.

The calculated kk;max of the bulk valence band

(0.19–0.22 Å�1) is larger than the experimental one

(0.14–0.18 Å�1). This can be explained by the overlap with

the surface state which crosses EF at kk � 0:12 Å
�1

(Fig. 4).

The small anisotropy of kk;max (DFT: 7%, ARPES: <10%)

between �C � �M and �C � �K was not detectable within the

experimental error.

We finally compare the metastable cubic phase with pre-

vious DFT calculations of the very similar hexagonal phase.

Most notably, a VBM away from �C consistently indicates

topologically non-trivial properties for GST-225.18,19,21,29,30

Albeit such a relation is also found for the 3D TIs BiSb,4,42

Bi2Te3,16,43 and Sb2Te3,15–17 it is currently under discussion

for Bi2Se3.16,44,45 None of these materials have a VBM away

from C with trivial properties.46 The measured kk;max is

smaller than the calculated kk;max of the bulk VBM of topo-

logically non-trivial hexagonal stable phases of GST-225

(0.16–0.52 Å�1).36 The superposition of bulk valence band

and topological surface state in the ARPES data might be

relevant again.

In summary, we have shown by ARPES and STS that

metastable cubic Ge2Sb2Te5 epitaxially grown on Si(111)

exhibits valence band maxima 0.14–0.18 Å�1 away from �C
and a band gap of 0.4 eV. All DFT calculations of

Ge2Sb2Te5 find a VBM away from C only for a Z2 topologi-

cal invariant �0 ¼ 1. This implies topological properties of

Ge2Sb2Te5, indicates that all phase change materials on the

pseudobinary line between Sb2Te3 and Ge2Sb2Te5 are topo-

logically non-trivial, and opens up the possibility of switch-

ing between an insulating amorphous phase and a

topological phase on ns time scales.
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