2,876 research outputs found

    Conservative Quantum Computing

    Full text link
    Conservation laws limit the accuracy of physical implementations of elementary quantum logic gates. If the computational basis is represented by a component of spin and physical implementations obey the angular momentum conservation law, any physically realizable unitary operators with size less than n qubits cannot implement the controlled-NOT gate within the error probability 1/(4n^2), where the size is defined as the total number of the computational qubits and the ancilla qubits. An analogous limit for bosonic ancillae is also obtained to show that the lower bound of the error probability is inversely proportional to the average number of photons. Any set of universal gates inevitably obeys a related limitation with error probability O(1/n^2)$. To circumvent the above or related limitations yielded by conservation laws, it is recommended that the computational basis should be chosen as the one commuting with the additively conserved quantities.Comment: 5 pages, RevTex. Corrected to include a new statement that for bosonic ancillae the lower bound of the error probability is inversely proportional to the average number of photons, kindly suggested by Julio Gea-Banacloch

    Microwave Tomographic Imaging Utilizing Low-Profile, Rotating, Right Angle-Bent Monopole Antennas

    Get PDF
    We have developed a simple mechanism incorporating feedline bends and rotary joints to enable motion of a monopole antenna within a liquid-based illumination chamber for tomographic imaging. The monopole is particularly well suited for this scenario because of its small size and simplicity. For the application presented here a full set of measurement data is collected from most illumination and receive directions utilizing only a pair of antennas configured with the rotating fixture underneath the imaging tank. Alternatively, the concept can be adapted for feed structures entering the tank from the sides to allow for measurements with vertically and horizontally polarized antennas. This opens the door for more advanced imaging applications where anisotropy could play an important role such as in bone imaging

    Relationship between tillering and grain yield of Kansas wheat varieties

    Get PDF

    Secure, Autonomous, Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations

    Get PDF
    This report describes a Secure, Autonomous, and Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations. It includes a description of current improvements to existing Virtual Mission Operations Center technology being used by US Department of Defense and originally developed under NASA funding. The report also highlights a technology demonstration performed in partnership with the United States Geological Service for Earth Resources Observation and Science using DigitalGlobe(Registered TradeMark) satellites to obtain space-based sensor data

    Quantum state estimation and large deviations

    Full text link
    In this paper we propose a method to estimate the density matrix \rho of a d-level quantum system by measurements on the N-fold system. The scheme is based on covariant observables and representation theory of unitary groups and it extends previous results concerning the estimation of the spectrum of \rho. We show that it is consistent (i.e. the original input state \rho is recovered with certainty if N \to \infty), analyze its large deviation behavior, and calculate explicitly the corresponding rate function which describes the exponential decrease of error probabilities in the limit N \to \infty. Finally we discuss the question whether the proposed scheme provides the fastest possible decay of error probabilities.Comment: LaTex2e, 40 pages, 2 figures. Substantial changes in Section 4: one new subsection (4.1) and another (4.2 was 4.1 in the previous version) completely rewritten. Minor changes in Sect. 2 and 3. Typos corrected. References added. Accepted for publication in Rev. Math. Phy

    Low temperature magnetic hysteresis in Mn12_{12} acetate single crystals

    Full text link
    Precise magnetic hysteresis measurements of small single crystals of Mn12_{12} acetate of spin 10 have been conducted down to 0.4 K using a high sensitivity Hall magnetometer. At higher temperature (>1.6K) step-like changes in magnetization are observed at regularly spaced magnetic field intervals, as previously reported. However, on lowering the temperature the steps in magnetization shift to higher magnetic fields, initially gradually. These results are consistent with the presence of a second order uniaxial magnetic anisotropy, first observed by EPR spectroscopy, and thermally assisted tunnelling with tunnelling relaxation occurring from levels of progressively lower energy as the temperature is reduced. At lower temperature an abrupt shift in step positions is found. We suggest that this shift may be the first evidence of an abrupt, or first-order, transition between thermally assisted and pure quantum tunnelling, suggested by recent theory.Comment: 8 pages, 4 figures, submitted to Europhys. Let

    Prompt deliquescence and efflorescence of aerosol nanoparticles

    Get PDF
    International audienceLiterature reports have differed on the possibilities of discontinuous and continuous (i.e., prompt and nonprompt) deliquescence and efflorescence of aerosol particles in the nanosize regime. Experiments reported herein using a hygroscopic tandem nano-differential mobility analyzer demonstrate prompt deliquescence and efflorescence of ammonium sulfate particles having diameters from 6 to 60 nm. Apparent nonpromptness can be induced both by operation of the experimental apparatus and by interpretation of the measurements, even though the underlying phase transitions of individual particles remain prompt. No nanosize effect on the relative humidity values of deliquescence or efflorescence is observed for the studied size range. Smaller hygroscopic growth factors are, however, observed for the nanoparticles, in agreement with thermodynamic calculations that include the Kelvin effect. A slightly nonspherical shape for dry ammonium sulfate particles is inferred from their hygroscopically induced reconstruction between 5 and 30% relative humidity. Our results provide a further understanding of nanoparticle behavior, especially relevant to the growth rates of atmospheric nanoparticles

    Superconducting phase diagram of the filled skuterrudite PrOs4Sb12

    Get PDF
    We present new measurements of the specific heat of the heavy fermion superconductor PrOs4Sb12, on a sample which exhibits two sharp distinct anomalies at Tc1= 1.89K and Tc2= 1.72K. They are used to draw a precise magnetic field-temperature superconducting phase diagram of PrOs4Sb12 down to 350 mK. We discuss the superconducting phase diagram of PrOs4Sb12 and its possible relation with an unconventional superconducting order parameter. We give a detailed analysis of Hc2(T), which shows paramagnetic limitation (a support for even parity pairing) and multiband effects

    Domain Wall Spin Dynamics in Kagome Antiferromagnets

    Full text link
    We report magnetization and neutron scattering measurements down to 60 mK on a new family of Fe based kagome antiferromagnets, in which a strong local spin anisotropy combined with a low exchange path network connectivity lead to domain walls intersecting the kagome planes through strings of free spins. These produce unfamiliar slow spin dynamics in the ordered phase, evolving from exchange-released spin-flips towards a cooperative behavior on decreasing the temperature, probably due to the onset of long-range dipolar interaction. A domain structure of independent magnetic grains is obtained that could be generic to other frustrated magnets.Comment: 5 pages, 4 figure
    • …
    corecore