2,597 research outputs found

    A Data Exchange Standard for Optical (Visible/IR) Interferometry

    Full text link
    This paper describes the OI Exchange Format, a standard for exchanging calibrated data from optical (visible/infrared) stellar interferometers. The standard is based on the Flexible Image Transport System (FITS), and supports storage of the optical interferometric observables including squared visibility and closure phase -- data products not included in radio interferometry standards such as UV-FITS. The format has already gained the support of most currently-operating optical interferometer projects, including COAST, NPOI, IOTA, CHARA, VLTI, PTI, and the Keck Interferometer, and is endorsed by the IAU Working Group on Optical Interferometry. Software is available for reading, writing and merging OI Exchange Format files.Comment: 26 pages, 1 figur

    Influence of temperature and viscosity on anthracene rotational diffusion in organic solvents: Molecular dynamics simulations and fluorescence anisotropy study

    Get PDF
    This is the publisher's version, also available electronically from http://scitation.aip.org/content/aip/journal/jcp/107/21/10.1063/1.475172.Molecular dynamics simulations and fluorescenceanisotropy decay measurements are used to investigate the rotational diffusion of anthracene in two organic solvents—cyclohexane and 2-propanol—at several temperatures. Molecular dynamics simulations of 1 ns length were performed for anthracene in cyclohexane (at 280, 296, and 310 K) and in 2-propanol (at 296 K). The calculated time constants for reorientation of the short in-plane axis were 7–9 and 11–16 ps at 296 K in cyclohexane and 2-propanol, respectively, in excellent agreement with corresponding fluorescence depolarization measurements of 8 and 14 ps. The measured rotational reorientation times and the calculated average rotational diffusion coefficients varied in accord with Debye–Stokes–Einstein theory. Their magnitudes were close to values predicted for an ellipsoid of shape and size equivalent to an anthracene molecule, and exhibited predictable variation with external conditions—increasing with temperature and decreasing with solventviscosity. However, analysis of the calculated rotational diffusion coefficients for the individual molecular axes gave a more complex picture. The diffusion was highly anisotropic and changes in temperature and solvent type led to nonuniform variation of the diffusion coefficients. The nature of these changes was rationalized based on analysis of variation of solvation patterns with temperature and solvent

    Entire solutions of hydrodynamical equations with exponential dissipation

    Get PDF
    We consider a modification of the three-dimensional Navier--Stokes equations and other hydrodynamical evolution equations with space-periodic initial conditions in which the usual Laplacian of the dissipation operator is replaced by an operator whose Fourier symbol grows exponentially as \ue ^{|k|/\kd} at high wavenumbers k|k|. Using estimates in suitable classes of analytic functions, we show that the solutions with initially finite energy become immediately entire in the space variables and that the Fourier coefficients decay faster than \ue ^{-C(k/\kd) \ln (|k|/\kd)} for any C<1/(2ln2)C<1/(2\ln 2). The same result holds for the one-dimensional Burgers equation with exponential dissipation but can be improved: heuristic arguments and very precise simulations, analyzed by the method of asymptotic extrapolation of van der Hoeven, indicate that the leading-order asymptotics is precisely of the above form with C=C=1/ln2C= C_\star =1/\ln2. The same behavior with a universal constant CC_\star is conjectured for the Navier--Stokes equations with exponential dissipation in any space dimension. This universality prevents the strong growth of intermittency in the far dissipation range which is obtained for ordinary Navier--Stokes turbulence. Possible applications to improved spectral simulations are briefly discussed.Comment: 29 pages, 3 figures, Comm. Math. Phys., in pres

    A measure of centrality based on the spectrum of the Laplacian

    Get PDF
    We introduce a family of new centralities, the k-spectral centralities. k-Spectral centrality is a measurement of importance with respect to the deformation of the graph Laplacian associated with the graph. Due to this connection, k-spectral centralities have various interpretations in terms of spectrally determined information. We explore this centrality in the context of several examples. While for sparse unweighted networks 1-spectral centrality behaves similarly to other standard centralities, for dense weighted networks they show different properties. In summary, the k-spectral centralities provide a novel and useful measurement of relevance (for single network elements as well as whole subnetworks) distinct from other known measures.Comment: 12 pages, 6 figures, 2 table

    The Mid-Infrared Colors of the ISM and Extended Sources at the Galactic Center

    Get PDF
    A mid-infrared (3.6-8 um) survey of the Galactic Center has been carried out with the IRAC instrument on the Spitzer Space Telescope. This survey covers the central 2x1.4 degree (~280x200 pc) of the Galaxy. At 3.6 and 4.5 um the emission is dominated by stellar sources, the fainter ones merging into an unresolved background. At 5.8 and 8 um the stellar sources are fainter, and large-scale diffuse emission from the ISM of the Galaxy's central molecular zone becomes prominent. The survey reveals that the 8 to 5.8 um color of the ISM emission is highly uniform across the surveyed region. This uniform color is consistent with a flat extinction law and emission from polycyclic aromatic hydrocarbons (PAHs). Models indicate that this broadband color should not be expected to change if the incident radiation field heating the dust and PAHs is <10^4 times that of the solar neighborhood. The few regions with unusually red emission are areas where the PAHs are underabundant and the radiation field is locally strong enough to heat large dust grains to produce significant 8 um emission. These red regions include compact H II regions, Sgr B1, and wider regions around the Arches and Quintuplet Clusters. In these regions the radiation field is >10^4 times that of the solar neighborhood. Other regions of very red emission indicate cases where thick dust clouds obscure deeply embedded objects or very early stages of star formation.Comment: 37 pages, 15 Postscript figures (low resolution). Accepted for publication in the Ap

    The Nature of the Molecular Environment within 5 pc of the Galactic Center

    Full text link
    We present a detailed study of molecular gas in the central 10pc of the Galaxy through spectral line observations of four rotation inversion transitions of NH3 made with the VLA. Updated line widths and NH3(1,1) opacities are presented, and temperatures, column densities, and masses are derived. We examine the impact of Sgr A East on molecular material at the Galactic center and find that there is no evidence that the expansion of this shell has moved a significant amount of the 50 km/s GMC. The western streamer, however, shows strong indications that it is composed of material swept-up by the expansion of Sgr A East. Using the mass and kinematics of the western streamer, we calculate an energy of E=(2-9)x10^{51} ergs for the progenitor explosion and conclude that Sgr A East was most likely produced by a single supernova. The temperature structure of molecular gas in the central ~20pc is also analyzed in detail. We find that molecular gas has a ``two-temperature'' structure similar to that measured by Huttemeister et al. (2003a) on larger scales. The largest observed line ratios, however, cannot be understood in terms of a two-temperature model, and most likely result from absorption of NH3(3,3) emission by cool surface layers of clouds. By comparing the observed NH3 (6,6)-to-(3,3) line ratios, we disentangle three distinct molecular features within a projected distance of 2pc from Sgr A*. Gas associated with the highest line ratios shows kinematic signatures of both rotation and expansion. The southern streamer shows no significant velocity gradients and does not appear to be directly associated with either the circumnuclear disk or the nucleus. The paper concludes with a discussion of the line-of-sight arrangement of the main features in the central 10pc.Comment: 51 pages, 16 figures, accepted for publication in ApJ. Due to size limitations, some of the images have been cut from this version. A complete, color PS or PDF version can be downloaded from http://www.astro.columbia.edu/~herrnstein/NH3/paper

    The Ellipticity and Orientation of Clusters of Galaxies from N-Body Experiments

    Get PDF
    In this study we use simulations of 1283^3 particles to study the ellipticity and orientation of clusters of galaxies in N-body simulations of differing power-law initial spectra (P(k) \propto k^n ,n = +1, 0, -1, -2),anddensityparameters(), and density parameters (\Omega_0 = 0.2to1.0).Furthermore,unlikemosttheoreticalstudieswemimicmostobserversbyremovingallparticleswhichlieatdistancesgreaterthan21/hMpcfromtheclustercenterofmass.Wecomputedtheaxialratioandtheprincipalaxesusingtheinertiatensorofeachcluster.Themeanellipticityofclustersincreasesstronglywithincreasing to 1.0). Furthermore, unlike most theoretical studies we mimic most observers by removing all particles which lie at distances greater than 2 1/h Mpc from the cluster center of mass. We computed the axial ratio and the principal axes using the inertia tensor of each cluster. The mean ellipticity of clusters increases strongly with increasing n.Wealsofindthatclusterstendtobecomemoresphericalatsmallerradii.Wecomparedtheorientationofaclustertotheorientationofneighboringclustersasafunctionofdistance(correlation).Inaddition,weconsideredwhetheraclustersmajoraxistendstoliealongthelineconnectingittoaneighboringcluster,asafunctionofdistance(alignment).Bothalignmentsandcorrelationswerecomputedinthreedimensionsandinprojectiontomimicobservationalsurveys.Ourresultsshowthatsignificantalignmentsexistforallspectraatsmallseparations(. We also find that clusters tend to become more spherical at smaller radii. We compared the orientation of a cluster to the orientation of neighboring clusters as a function of distance (correlation). In addition, we considered whether a cluster's major axis tends to lie along the line connecting it to a neighboring cluster, as a function of distance (alignment). Both alignments and correlations were computed in three dimensions and in projection to mimic observational surveys. Our results show that significant alignments exist for all spectra at small separations (D < 15 h^{-1}Mpc)butdropsoffatlargerdistanceinastrongly Mpc) but drops off at larger distance in a strongly n-$dependent way.Comment: 22 pages, requires aaspp4.sty, flushrt.sty, and epsf.sty Revised manuscript, accepted for publication in Ap

    First astronomical unit scale image of the GW Ori triple. Direct detection of a new stellar companion

    Get PDF
    Young and close multiple systems are unique laboratories to probe the initial dynamical interactions between forming stellar systems and their dust and gas environment. Their study is a key building block to understanding the high frequency of main-sequence multiple systems. However, the number of detected spectroscopic young multiple systems that allow dynamical studies is limited. GW Orionis is one such system. It is one of the brightest young T Tauri stars and is surrounded by a massive disk. Our goal is to probe the GW Orionis multiplicity at angular scales at which we can spatially resolve the orbit. We used the IOTA/IONIC3 interferometer to probe the environment of GW Orionis with an astronomical unit resolution in 2003, 2004, and 2005. By measuring squared visibilities and closure phases with a good UV coverage we carry out the first image reconstruction of GW Ori from infrared long-baseline interferometry. We obtain the first infrared image of a T Tauri multiple system with astronomical unit resolution. We show that GW Orionis is a triple system, resolve for the first time the previously known inner pair (separation ρ\rho\sim1.4 AU) and reveal a new more distant component (GW Ori C) with a projected separation of \sim8 AU with direct evidence of motion. Furthermore, the nearly equal (2:1) H-band flux ratio of the inner components suggests that either GW Ori B is undergoing a preferential accretion event that increases its disk luminosity or that the estimate of the masses has to be revisited in favour of a more equal mass-ratio system that is seen at lower inclination. Accretion disk models of GW Ori will need to be completely reconsidered because of this outer companion C and the unexpected brightness of companion B.Comment: 5 pages, 9 figures, accepted Astronomy and Astrophysics Letters. 201

    Demonstration of the effect of stirring on nucleation from experiments on the International Space Station using the ISS-EML facility

    Get PDF
    The effect of fluid flow on crystal nucleation in supercooled liquids is not well understood. The variable density and temperature gradients in the liquid make it difficult to study this under terrestrial gravity conditions. Nucleation experiments were therefore made in a microgravity environment using the Electromagnetic Levitation facility on the International Space Station on a bulk glass-forming Zr57Cu15.4Ni12.6Al10Nb5 (Vit106), as well as Cu50Zr50 and the quasicrystal-forming Ti39.5Zr39.5Ni21 liquids. The maximum supercooling temperatures for each alloy were measured as a function of controlled stirring by applying various combinations of radio frequency positioner and heater voltages to the water-cooled copper coils. The flow patterns were simulated from the known parameters for the coil and the levitated samples. The maximum nucleation temperatures increased systematically with increased fluid flow in the liquids for Vit106, but stayed nearly unchanged for the other two. These results are consistent with the predictions from the coupled-flux model for nucleation.Comment: 21 pages, 2 figure
    corecore