3,507 research outputs found
Entire solutions of hydrodynamical equations with exponential dissipation
We consider a modification of the three-dimensional Navier--Stokes equations
and other hydrodynamical evolution equations with space-periodic initial
conditions in which the usual Laplacian of the dissipation operator is replaced
by an operator whose Fourier symbol grows exponentially as \ue ^{|k|/\kd} at
high wavenumbers . Using estimates in suitable classes of analytic
functions, we show that the solutions with initially finite energy become
immediately entire in the space variables and that the Fourier coefficients
decay faster than \ue ^{-C(k/\kd) \ln (|k|/\kd)} for any . The
same result holds for the one-dimensional Burgers equation with exponential
dissipation but can be improved: heuristic arguments and very precise
simulations, analyzed by the method of asymptotic extrapolation of van der
Hoeven, indicate that the leading-order asymptotics is precisely of the above
form with . The same behavior with a universal constant
is conjectured for the Navier--Stokes equations with exponential
dissipation in any space dimension. This universality prevents the strong
growth of intermittency in the far dissipation range which is obtained for
ordinary Navier--Stokes turbulence. Possible applications to improved spectral
simulations are briefly discussed.Comment: 29 pages, 3 figures, Comm. Math. Phys., in pres
A measure of centrality based on the spectrum of the Laplacian
We introduce a family of new centralities, the k-spectral centralities.
k-Spectral centrality is a measurement of importance with respect to the
deformation of the graph Laplacian associated with the graph. Due to this
connection, k-spectral centralities have various interpretations in terms of
spectrally determined information.
We explore this centrality in the context of several examples. While for
sparse unweighted networks 1-spectral centrality behaves similarly to other
standard centralities, for dense weighted networks they show different
properties. In summary, the k-spectral centralities provide a novel and useful
measurement of relevance (for single network elements as well as whole
subnetworks) distinct from other known measures.Comment: 12 pages, 6 figures, 2 table
The Nature of the Molecular Environment within 5 pc of the Galactic Center
We present a detailed study of molecular gas in the central 10pc of the
Galaxy through spectral line observations of four rotation inversion
transitions of NH3 made with the VLA. Updated line widths and NH3(1,1)
opacities are presented, and temperatures, column densities, and masses are
derived. We examine the impact of Sgr A East on molecular material at the
Galactic center and find that there is no evidence that the expansion of this
shell has moved a significant amount of the 50 km/s GMC. The western streamer,
however, shows strong indications that it is composed of material swept-up by
the expansion of Sgr A East. Using the mass and kinematics of the western
streamer, we calculate an energy of E=(2-9)x10^{51} ergs for the progenitor
explosion and conclude that Sgr A East was most likely produced by a single
supernova. The temperature structure of molecular gas in the central ~20pc is
also analyzed in detail. We find that molecular gas has a ``two-temperature''
structure similar to that measured by Huttemeister et al. (2003a) on larger
scales. The largest observed line ratios, however, cannot be understood in
terms of a two-temperature model, and most likely result from absorption of
NH3(3,3) emission by cool surface layers of clouds. By comparing the observed
NH3 (6,6)-to-(3,3) line ratios, we disentangle three distinct molecular
features within a projected distance of 2pc from Sgr A*. Gas associated with
the highest line ratios shows kinematic signatures of both rotation and
expansion. The southern streamer shows no significant velocity gradients and
does not appear to be directly associated with either the circumnuclear disk or
the nucleus. The paper concludes with a discussion of the line-of-sight
arrangement of the main features in the central 10pc.Comment: 51 pages, 16 figures, accepted for publication in ApJ. Due to size
limitations, some of the images have been cut from this version. A complete,
color PS or PDF version can be downloaded from
http://www.astro.columbia.edu/~herrnstein/NH3/paper
Constraining Disk Parameters of Be Stars using Narrowband H-alpha Interferometry with the NPOI
Interferometric observations of two well-known Be stars, gamma Cas and phi
Per, were collected and analyzed to determine the spatial characteristics of
their circumstellar regions. The observations were obtained using the Navy
Prototype Optical Interferometer equipped with custom-made narrowband filters.
The filters isolate the H-alpha emission line from the nearby continuum
radiation, which results in an increased contrast between the interferometric
signature due to the H-alpha-emitting circumstellar region and the central
star. Because the narrowband filters do not significantly attenuate the
continuum radiation at wavelengths 50 nm or more away from the line, the
interferometric signal in the H-alpha channel is calibrated with respect to the
continuum channels. The observations used in this study represent the highest
spatial resolution measurements of the H-alpha-emitting regions of Be stars
obtained to date. These observations allow us to demonstrate for the first time
that the intensity distribution in the circumstellar region of a Be star cannot
be represented by uniform disk or ring-like structures, whereas a Gaussian
intensity distribution appears to be fully consistent with our observations.Comment: 23 pages, 14 figures, accepted for publication in A
Measurements of binary stars with coherent integration of NPOI data
In this paper we use coherently integrated visibilities (see separate paper
in these proceedings, Jorgensen et al. 2008) to measure the properties of
binary stars. We use only the phase of the complex visibility and not the
amplitude. The reason for this is that amplitudes suffer from the calibration
effect (the same for coherent and incoherent averages) and thus effectively
provide lower accuracy measurements. We demonstrate that the baseline phase
alone can be used to measure the separation, orientation and brightness ratio
of a binary star, as a function of wavelength.Comment: 2008 SPIE Astronomical Telescopes and Instrumentatio
The Ellipticity and Orientation of Clusters of Galaxies from N-Body Experiments
In this study we use simulations of 128 particles to study the
ellipticity and orientation of clusters of galaxies in N-body simulations of
differing power-law initial spectra (P(k) \propto k^n ,n = +1, 0, -1, -2\Omega_0 = 0.2nD < 15 h^{-1}n-$dependent way.Comment: 22 pages, requires aaspp4.sty, flushrt.sty, and epsf.sty Revised
manuscript, accepted for publication in Ap
Steps toward the power spectrum of matter. II. The biasing correction with sigma_8 normalization
A new method to determine the bias parameter of galaxies relative to matter
is suggested. The method is based on the assumption that gravity is the
dominating force which determines the formation of the structure in the
Universe. Due to gravitational instability the galaxy formation is a threshold
process: in low-density environments galaxies do not form and matter remains in
primordial form. We investigate the influence of the presence of void and
clustered populations to the power spectrum of matter and galaxies. The power
spectrum of galaxies is similar to the power spectrum of matter; the fraction
of total matter in the clustered population determines the difference between
amplitudes of fluctuations of matter and galaxies, i.e. the bias factor. To
determine the fraction of matter in voids and clustered population we perform
numerical simulations. The fraction of matter in galaxies at the present epoch
is found using a calibration through the sigma_8 parameter.Comment: LaTex (sty files added), 31 pages, 4 PostScript figures embedded,
Astrophysical Journal (accepted
The HgMn Binary Star Phi Herculis: Detection and Properties of the Secondary and Revision of the Elemental Abundances of the Primary
Observations of the Mercury-Manganese star Phi Herculis with the Navy
Prototype Optical Interferometer (NPOI) conclusively reveal the previously
unseen companion in this single-lined binary system. The NPOI data were used to
predict a spectral type of A8V for the secondary star Phi Her B. This
prediction was subsequently confirmed by spectroscopic observations obtained at
the Dominion Astrophysical Observatory. Phi Her B is rotating at 50 +/-3
km/sec, in contrast to the 8 km/sec lines of Phi Her A. Recognizing the lines
from the secondary permits one to separate them from those of the primary. The
abundance analysis of Phi Her A shows an abundance pattern similar to those of
other HgMn stars with Al being very underabundant and Sc, Cr, Mn, Zn, Ga, Sr,
Y, Zr, Ba, Ce, and Hg being very overabundant.Comment: Accepted to ApJ, 45 pages, 11 figure
Children's scale errors: A by-product of lexical development?
Scale errors occur when young children seriously attempt to perform an action on an object which is impossible due to its size. Children vary substantially in the incidence of scale errors with many factors potentially contributing to these differences, such as age and the type of scale errors. In particular, the evidence for an inverted U-shaped curve of scale errors involving the child's body (i.e., body scale errors), which would point to a developmental stage, is mixed. Here we re-examine how body scale errors vary with age and explore the possibility that these errors would be related to the size and properties of children's lexicon. A large sample of children aged 18-30 months (N = 125) was tested in a scale error elicitation situation. Additionally, parental questionnaires were collected to assess children's receptive and expressive lexicon. Our key findings are that scale errors linearly decrease with age in childhood, and are more likely to be found in early talkers rather than in less advanced ones. This suggests that scale errors do not correspond to a developmental stage, and that one determinant of these errors is the speed of development of the linguistic and conceptual system, as a potential explanation for the individual variability in prevalence
- …