114 research outputs found

    Oleic acid esterification catalyzed by zeolite y - model of the biomass conversion

    Get PDF
    Lignocellulosic biomass is a promising renewable source for production of fuels and chemicals with significant life cycle and economy of scale advantages over other biomass sources, such as starches, vegetable oils, and animal fats. The large-scale application of zeolites in biomass conversion can be explained by with adjustable confinement at the nano scale, Brønsted acid strength that derive from its Si/Al ratio and high thermal stability1. In this context, the aim of this study was to test the catalytic activity of zeolite H-Y with high Si/Al ratio for its application in the esterification reaction of oleic acid (OA) with methanol (MeOH) for the synthesis of alkyl esters. Zeolite Y in protonated form with Si / Al = 80 ratio was obtained from Zeolyst International. The catalytic activity of zeolite H-Y was carried out using the esterification reaction of OA by MeOH. The experiments were conducted in reflux system with magnetic stirring at different temperatures (60 and 75 °C), catalyst contents (10 %), OA mass ratios (1:2, 1:3 and 1:6) and residence times (0.5, 1, 1.5, 2, 3, 4.5, 6, 8, 12 and 16 hs). The reaction mixture was collected from the reflux system, and cooled to room temperature. The solution was removed from the catalyst by filtration. The conversion was defined as the change of acid content before and after the oil reaction by the acid content of the initial oil. An interpretation of the catalytic activity is given from theoretical calculations.Analysis indicate that the increase in reaction time results in higher ester conversion rates, reaching the reaction equilibrium after 16 hs of reaction, according to Kirumakki et. al. the time required to achieve equilibrium depends on the reactants used2. It is observed that the conversion of OA results in a high reaction time when is compared to previous works2-4, the main effect for this system is centered in the high Si/Al ratio, which results in the less presence of active sites available in the catalytic process. The optimum reaction conditions were obtained with a molar ratio of 1:3 and 75 °C, resulting in 82 % conversion of ester after 16 hs of reaction. The higher alcohol concentration in the system shifts the equilibrium of the reaction towards the formation of products, as well as the decrease in the viscosity of the reactional system, reducing the transfer rate, which results in a high conversion when compared to the others catalytic tests. According to our previous work, the esterification of carboxylic acids presents a competitive adsorption between methanol and carboxylic acid on the Brønsted acid site5, so that the main hypothesis for the lower product conversion in the esterification reaction with 1:6 molar ratio is related to the adsorption of MeOH on the active site. The effect of self-catalysis on the reactional environment is not reported in the studies cited, according to Raia et. al., auto-catalysis in esterification has a significant importance in the conversion of free fatty acids6. The uncatalyzed reaction resulted in approximately 16 % conversion after 16 hs of reaction, and this result serves as a comparison for the conditions in which the catalyst is added to the system. The H-Y catalyst proved to be efficient and promising for the esterification of OA with MeOH, however, it presented a high reaction time can be optimized with the increase of temperature and greater mass of catalyst, thus, further studies are needed to describe the reaction mechanisms in order to understand the conversion of biomass on the surface of acid zeolites.Fil: Gomes, Glaucio José. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Química. Laboratorio de Estructura Molecular y Propiedades; Argentina. Universidade Estadual de Maringá. Departamento de Engenharia Química.; BrasilFil: Dal Pozzo, Daniel M.. Universidade Federal do Paraná; BrasilFil: Zalazar, Maria Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; ArgentinaFil: Costa, M. B.. Universidade Federal do Paraná; BrasilFil: Arroyo, Pedro Augusto. Universidade Estadual de Maringá. Departamento de Engenharia Química.; BrasilFil: Bittencourt, Paulo R. S.. Universidade Federal do Paraná; BrasilVI San Luis School and Conference on Surfaces, Interfaces and CatalysisSanta FeArgentinaInstituto de Investigaciones en Catálisis y PetroquímicaUniversidad Nacional del Litora

    Oleic Acid Esterification Catalyzed By Zeolite Y-Model of the Biomass Conversion

    Get PDF
    Residual oils and fats are promising renewable sources for the production of liquid fuels and the synthesis of various chemicals with significant life cycle and large-scale economic advantages over other biomass sources. Thus, oleic acid esterification was investigated on zeolites type FAU and sulfuric acid by kinetic, spectroscopic assessments and theoretical calculations using a hybrid ONIOM scheme. In the catalytic tests, the solid catalyst with the highest Si/Al (H-Y-80) ratio showed the highest catalytic activity for esterification (92% conversion) as compared to H-Y-5.2 (66% conversion), Na-Y (15% conversion) and homogeneous acid catalysis (89% conversion). The catalytic activity between different acid catalysts is discussed. It was observed that the acidity of the active sites and the hydrophobicity resulting from the Si/Al molar ratio influence the esterification conversion. Theoretical calcultations predicts that the voluminous confined space of the FAU zeolite perfectly accommodates the oleic acid molecule in the adsorption step (Eads= -25.5 kJ mol-1) and the van der Waals interactions of the zeolite walls with the aliphatic chain help to accommodate the bulky molecule between the supercages. Experimental and theoretical results confirm that H-Y-80 zeolite applied in the esterification reaction can be an efficient catalyst in processes involving conversion of unsaturated fatty acids.Fil: Gomes, Glaucio José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; ArgentinaFil: Dal Pozzo, Daniel M.. Universidade Federal do Paraná; BrasilFil: Zalazar, Maria Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; ArgentinaFil: Budke Costa, Michelle. Universidade Federal do Paraná; BrasilFil: Arroyo, Pedro Augusto. Universidade Estadual de Maringá; BrasilFil: Bittencourt, Paulo R. S.. Universidade Federal do Paraná; Brasi

    Anatomical Organization of Urocortin 3-Synthesizing Neurons and Immunoreactive Terminals in the Central Nervous System of Non-Human Primates [Sapajus spp.]

    Get PDF
    Urocortin 3 (UCN3) is a neuropeptide member of the corticotropin-releasing factor (CRF) peptide family that acts as a selective endogenous ligand for the CRF, subtype 2 (CRF2) receptor. Immunohistochemistry and in situ hybridization data from rodents revealed UCN3-containing neurons in discrete regions of the central nervous system (CNS), such as the medial preoptic nucleus, the rostral perifornical area (PFA), the medial nucleus of the amygdala and the superior paraolivary nucleus. UCN3-immunoreactive (UCN3-ir) terminals are distributed throughout regions that mostly overlap with regions of CRF2 messenger RNA (mRNA) expression. Currently, no similar mapping exists for non-human primates. To better understand the role of this neuropeptide, we aimed to study the UCN3 distribution in the brains of New World monkeys of the Sapajus genus. To this end, we analyzed the gene and peptide sequences in these animals and performed immunohistochemistry and in situ hybridization to identify UCN3 synthesis sites and to determine the distribution of UCN3-ir terminals. The sequencing of the Sapajus spp. UCN3-coding gene revealed 88% and 65% identity to the human and rat counterparts, respectively. Additionally, using a probe generated from monkey cDNA and an antiserum raised against human UCN3, we found that labeled cells are mainly located in the hypothalamic and limbic regions. UCN3-ir axons and terminals are primarily distributed in the ventromedial hypothalamic nucleus (VMH) and the lateral septal nucleus (LS). Our results demonstrate that UCN3-producing neurons in the CNS of monkeys are phylogenetically conserved compared to those of the rodent brain, that the distribution of fibers agrees with the distribution of CRF2 in other primates and that there is anatomical evidence for the participation of UCN3 in neuroendocrine control in primates

    Chronic inflammatory diseases, subclinical atherosclerosis, and cardiovascular diseases: Design, objectives, and baseline characteristics of a prospective case-cohort study ‒ ELSA-Brasil

    Get PDF
    Objectives: This analysis describes the protocol of a study with a case-cohort to design to prospectively evaluate the incidence of subclinical atherosclerosis and Cardiovascular Disease (CVD) in Chronic Inflammatory Disease (CID) participants compared to non-diseased ones. Methods: A high-risk group for CID was defined based on data collected in all visits on self-reported medical diagnosis, use of medicines, and levels of high-sensitivity C-Reactive Protein >10 mg/L. The comparison group is the Aleatory Cohort Sample (ACS): a group with 10% of participants selected at baseline who represent the entire cohort. In both groups, specific biomarkers for DIC, markers of subclinical atherosclerosis, and CVD morbimortality will be tested using weighted Cox. Results: The high-risk group (n = 2,949; aged 53.6 ± 9.2; 65.5% women) and the ACS (n=1543; 52.2±8.8; 54.1% women) were identified. Beyond being older and mostly women, participants in the high-risk group present low average income (29.1% vs. 24.8%, p < 0.0001), higher BMI (Kg/m2) (28.1 vs. 26.9, p < 0.0001), higher waist circumference (cm) (93.3 vs. 91, p < 0.0001), higher frequencies of hypertension (40.2% vs. 34.5%, p < 0.0001), diabetes (20.7% vs. 17%, p = 0.003) depression (5.8% vs. 3.9%, p = 0.007) and higher levels of GlycA a new inflammatory marker (p < 0.0001) compared to the ACS. Conclusions: The high-risk group selected mostly women, older, lower-income/education, higher BMI, waist circumference, and of hypertension, diabetes, depression, and higher levels of GlycA when compared to the ACS. The strategy chosen to define the high-risk group seems adequate given that multiple sociodemographic and clinical characteristics are compatible with CID

    Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests

    Get PDF
    Funding: Data collection was largely funded by the UK Natural Environment Research Council (NERC) project TREMOR (NE/N004655/1) to D.G., E.G. and O.P., with further funds from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES, finance code 001) to J.V.T. and a University of Leeds Climate Research Bursary Fund to J.V.T. D.G., E.G. and O.P. acknowledge further support from a NERC-funded consortium award (ARBOLES, NE/S011811/1). This paper is an outcome of J.V.T.’s doctoral thesis, which was sponsored by CAPES (GDE 99999.001293/2015-00). J.V.T. was previously supported by the NERC-funded ARBOLES project (NE/S011811/1) and is supported at present by the Swedish Research Council Vetenskapsrådet (grant no. 2019-03758 to R.M.). E.G., O.P. and D.G. acknowledge support from NERC-funded BIORED grant (NE/N012542/1). O.P. acknowledges support from an ERC Advanced Grant and a Royal Society Wolfson Research Merit Award. R.S.O. was supported by a CNPq productivity scholarship, the São Paulo Research Foundation (FAPESP-Microsoft 11/52072-0) and the US Department of Energy, project GoAmazon (FAPESP 2013/50531-2). M.M. acknowledges support from MINECO FUN2FUN (CGL2013-46808-R) and DRESS (CGL2017-89149-C2-1-R). C.S.-M., F.B.V. and P.R.L.B. were financed by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES, finance code 001). C.S.-M. received a scholarship from the Brazilian National Council for Scientific and Technological Development (CNPq 140353/2017-8) and CAPES (science without borders 88881.135316/2016-01). Y.M. acknowledges the Gordon and Betty Moore Foundation and ERC Advanced Investigator Grant (GEM-TRAITS, 321131) for supporting the Global Ecosystems Monitoring (GEM) network (gem.tropicalforests.ox.ac.uk), within which some of the field sites (KEN, TAM and ALP) are nested. The authors thank Brazil–USA Collaborative Research GoAmazon DOE-FAPESP-FAPEAM (FAPESP 2013/50533-5 to L.A.) and National Science Foundation (award DEB-1753973 to L. Alves). They thank Serrapilheira Serra-1709-18983 (to M.H.) and CNPq-PELD/POPA-441443/2016-8 (to L.G.) (P.I. Albertina Lima). They thank all the colleagues and grants mentioned elsewhere [8,36] that established, identified and measured the Amazon forest plots in the RAINFOR network analysed here. The authors particularly thank J. Lyod, S. Almeida, F. Brown, B. Vicenti, N. Silva and L. Alves. This work is an outcome approved Research Project no. 19 from ForestPlots.net, a collaborative initiative developed at the University of Leeds that unites researchers and the monitoring of their permanent plots from the world’s tropical forests [61]. The authros thank A. Levesley, K. Melgaço Ladvocat and G. Pickavance for ForestPlots.net management. They thank Y. Wang and J. Baker, respectively, for their help with the map and with the climatic data. The authors acknowledge the invaluable help of M. Brum for kindly providing the comparison of vulnerability curves based on PAD and on PLC shown in this manuscript. They thank J. Martinez-Vilalta for his comments on an early version of this manuscript. The authors also thank V. Hilares and the Asociación para la Investigación y Desarrollo Integral (AIDER, Puerto Maldonado, Peru); V. Saldaña and Instituto de Investigaciones de la Amazonía Peruana (IIAP) for local field campaign support in Peru; E. Chavez and Noel Kempff Natural History Museum for local field campaign support in Bolivia; ICMBio, INPA/NAPPA/LBA COOMFLONA (Cooperativa mista da Flona Tapajós) and T. I. Bragança-Marituba for the research support.Tropical forests face increasing climate risk1,2, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, Ψ50) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk3-5, little is known about how these vary across Earth's largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters Ψ50 and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both Ψ50 and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM50 forests. We propose that this may be associated with a growth-mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon6,7, with strong implications for the Amazon carbon sink.Publisher PDFPeer reviewe
    corecore