76 research outputs found

    Grandma Sarah and the Maharal of Prague

    Get PDF
    This article, written in the style of a personal memoir, contains an astonishing genealogical discovery about my grandmother's ancestry, that was made possible through a combination of traditional genealogical research and Y-DNA technology. The results demonstrate what a powerful tool Y-DNA can be for connecting previously unknown rabbinical descendants to well-documented ancestral lineages

    When specialists compete: increased competition as a cost of resource polymorphism

    Get PDF
    Resource polymorphisms--the occurrence within a single population of alternative morphs showing differential resource use--are spectacular examples of diversity within species. Here, we empirically evaluate a potential constraint to resource polymorphism in spadefoot toad tadpoles. We characterize the dietary differences between alternative carnivore and omnivore morphs and assess the potential ecological consequence of any such differences. We found that, as a group, the ancestral omnivore morph is a trophic generalist, whereas the derived carnivore morph is a trophic specialist. Furthermore, we show that these specialist carnivores experience greater intramorph competition for their distinctive resources than do the generalist omnivores. In contrast to the situation in omnivores, functional limitations associated with the evolution of trophic specialization may preclude carnivores from switching to alternative resources when the resource for which they are adapted is depleted. Generally, such costs of resource specialization may often constrain the evolution of resource polymorphism

    Gene Function Expression Profile of Faba bean (Vicia faba) Seeds

    Get PDF
    Faba bean (Vicia faba L) is one of the important grain crops worldwide and its genome, the largest among grain legumes (approx. 13.4 Gb), has yet to be sequenced. Comprehensive knowledge of genes expressed in the crop's large seeds would not only help drive new gene c improvements in the crop but also aid its future genome characteriza on. Here, we applied high throughput RNA- Seq (Quan ca on) technology to compare gene expression pro les of seeds recovered from six faba bean varie es with divergent agronomic and seed quality a ributes. We iden ed a total of 47,621 Unigenes across all genotypes and a mean count of 38,712 per genotype, total genes length 27605508bp. Comparison between expression levels in lines possessing contras ng phenotypes allowed us to iden fy candidate genes that may be associated with key traits. In all pairwise comparisons of genotypes, pairwise up-regulated plus down-regulated di erences varied between 8,661 and 12,337 genes and co-expressed genes uctuated between 30,239 and 35,884. Overall, there was a mean of 24.2% genes that were di eren ally expressed between pairs of genotypes. They were similar of GO pro les generated between the two phenotypic traits (Hydra on Capacity and Pea seed-borne mosaic virus (PSbMV) pools and comparison of the GO pro les generated by all pairs of individual genotypes. This is the rst comprehensive analysis of gene expression gene c pro le on faba bean seeds.publishersversionPeer reviewe

    Transcriptome sequencing of field pea and faba bean for discovery and validation of SSR genetic markers

    Get PDF
    BACKGROUND: Field pea (Pisum sativum L.) and faba bean (Vicia faba L.) are cool-season grain legume species that provide rich sources of food for humans and fodder for livestock. To date, both species have been relative ‘genomic orphans’ due to limited availability of genetic and genomic information. A significant enrichment of genomic resources is consequently required in order to understand the genetic architecture of important agronomic traits, and to support germplasm enhancement, genetic diversity, population structure and demographic studies. RESULTS: cDNA samples obtained from various tissue types of specific field pea and faba bean genotypes were sequenced using 454 Roche GS FLX Titanium technology. A total of 720,324 and 304,680 reads for field pea and faba bean, respectively, were de novo assembled to generate sets of 70,682 and 60,440 unigenes. Consensus sequences were compared against the genome of the model legume species Medicago truncatula Gaertn., as well as that of the more distantly related, but better-characterised genome of Arabidopsis thaliana L.. In comparison to M. truncatula coding sequences, 11,737 and 10,179 unique hits were obtained from field pea and faba bean. Totals of 22,057 field pea and 18,052 faba bean unigenes were subsequently annotated from GenBank. Comparison to the genome of soybean (Glycine max L.) resulted in 19,451 unique hits for field pea and 16,497 unique hits for faba bean, corresponding to c. 35% and 30% of the known gene space, respectively. Simple sequence repeat (SSR)- containing expressed sequence tags (ESTs) were identified from consensus sequences, and totals of 2,397 and 802 primer pairs were designed for field pea and faba bean. Subsets of 96 EST-SSR markers were screened for validation across modest panels of field pea and faba bean cultivars, as well as related non-domesticated species. For field pea, 86 primer pairs successfully obtained amplification products from one or more template genotypes, of which 59% revealed polymorphism between 6 genotypes. In the case of faba bean, 81 primer pairs displayed successful amplification, of which 48% detected polymorphism. CONCLUSIONS: The generation of EST datasets for field pea and faba bean has permitted effective unigene identification and functional sequence annotation. EST-SSR loci were detected at incidences of 14-17%, permitting design of comprehensive sets of primer pairs. The subsets from these primer pairs proved highly useful for polymorphism detection within Pisum and Vicia germplasm.Sukhjiwan Kaur, Luke W. Pembleton, Noel O.I. Cogan, Keith W. Savin, Tony Leonforte, Jeffrey Paull, Michael Materne and John W. Forste

    The bracteatus pineapple genome and domestication of clonally propagated crops

    Get PDF
    Domestication of clonally propagated crops such as pineapple from South America was hypothesized to be a 'one-step operation'. We sequenced the genome of Ananas comosus var. bracteatus CB5 and assembled 513 Mb into 25 chromosomes with 29,412 genes. Comparison of the genomes of CB5, F153 and MD2 elucidated the genomic basis of fiber production, color formation, sugar accumulation and fruit maturation. We also resequenced 89 Ananas genomes. Cultivars 'Smooth Cayenne' and 'Queen' exhibited ancient and recent admixture, while 'Singapore Spanish' supported a one-step operation of domestication. We identified 25 selective sweeps, including a strong sweep containing a pair of tandemly duplicated bromelain inhibitors. Four candidate genes for self-incompatibility were linked in F153, but were not functional in self-compatible CB5. Our findings support the coexistence of sexual recombination and a one-step operation in the domestication of clonally propagated crops. This work guides the exploration of sexual and asexual domestication trajectories in other clonally propagated crops

    British signals intelligence and the 1916 Easter Rising in Ireland

    Get PDF
    Historians for decades have placed Room 40, the First World War British naval signals intelligence organization, at the centre of narratives about the British anticipation of and response to the Easter Rising in Ireland in 1916. A series of crucial decrypts of telegrams between the German embassy in Washington and Berlin, it has been believed, provided significant advance intelligence about the Rising before it took place. This article upends previous accounts by demonstrating that Room 40 possessed far less advance knowledge about the Rising than has been believed, with most of the supposedly key decrypts not being generated until months after the Rising had taken place

    Both telomeric and non-telomeric DNA damage are determinants of mammalian cellular senescence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cellular senescence is a state reached by normal mammalian cells after a finite number of cell divisions and is characterized by morphological and physiological changes including terminal cell-cycle arrest. The limits on cell division imposed by senescence may play an important role in both organismal aging and in preventing tumorigenesis. Cellular senescence and organismal aging are both accompanied by increased DNA damage, seen as the formation of γ-H2AX foci (γ-foci), which may be found on uncapped telomeres or at non-telomeric sites of DNA damage. However, the relative importance of telomere- and non-telomere-associated DNA damage to inducing senescence has never been demonstrated. Here we present a new approach to determine accurately the chromosomal location of γ-foci and quantify the number of telomeric versus non-telomeric γ-foci associated with senescence in both human and mouse cells. This approach enables researchers to obtain accurate values and to avoid various possible misestimates inherent in earlier methods.</p> <p>Results</p> <p>Using combined immunofluorescence and telomere fluorescence <it>in situ </it>hybridization on metaphase chromosomes, we show that human cellular senescence is not solely determined by telomeric DNA damage. In addition, mouse cellular senescence is not solely determined by non-telomeric DNA damage. By comparing cells from different generations of telomerase-null mice with human cells, we show that cells from late generation telomerase-null mice, which have substantially short telomeres, contain mostly telomeric γ-foci. Most notably, we report that, as human and mouse cells approach senescence, all cells exhibit similar numbers of total γ-foci per cell, irrespective of chromosomal locations.</p> <p>Conclusion</p> <p>Our results suggest that the chromosome location of senescence-related γ-foci is determined by the telomere length rather than species differences <it>per se</it>. In addition, our data indicate that both telomeric and non-telomeric DNA damage responses play equivalent roles in signaling the initiation of cellular senescence and organismal aging. These data have important implications in the study of mechanisms to induce or delay cellular senescence in different species.</p

    The lung cancer exercise training study: a randomized trial of aerobic training, resistance training, or both in postsurgical lung cancer patients: rationale and design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Lung Cancer Exercise Training Study (LUNGEVITY) is a randomized trial to investigate the efficacy of different types of exercise training on cardiorespiratory fitness (VO<sub>2peak</sub>), patient-reported outcomes, and the organ components that govern VO<sub>2peak </sub>in post-operative non-small cell lung cancer (NSCLC) patients.</p> <p>Methods/Design</p> <p>Using a single-center, randomized design, 160 subjects (40 patients/study arm) with histologically confirmed stage I-IIIA NSCLC following curative-intent complete surgical resection at Duke University Medical Center (DUMC) will be potentially eligible for this trial. Following baseline assessments, eligible participants will be randomly assigned to one of four conditions: (1) aerobic training alone, (2) resistance training alone, (3) the combination of aerobic and resistance training, or (4) attention-control (progressive stretching). The ultimate goal for all exercise training groups will be 3 supervised exercise sessions per week an intensity above 70% of the individually determined VO<sub>2peak </sub>for aerobic training and an intensity between 60 and 80% of one-repetition maximum for resistance training, for 30-45 minutes/session. Progressive stretching will be matched to the exercise groups in terms of program length (i.e., 16 weeks), social interaction (participants will receive one-on-one instruction), and duration (30-45 mins/session). The primary study endpoint is VO<sub>2peak</sub>. Secondary endpoints include: patient-reported outcomes (PROs) (e.g., quality of life, fatigue, depression, etc.) and organ components of the oxygen cascade (i.e., pulmonary function, cardiac function, skeletal muscle function). All endpoints will be assessed at baseline and postintervention (16 weeks). Substudies will include genetic studies regarding individual responses to an exercise stimulus, theoretical determinants of exercise adherence, examination of the psychological mediators of the exercise - PRO relationship, and exercise-induced changes in gene expression.</p> <p>Discussion</p> <p>VO<sub>2peak </sub>is becoming increasingly recognized as an outcome of major importance in NSCLC. LUNGEVITY will identify the optimal form of exercise training for NSCLC survivors as well as provide insight into the physiological mechanisms underlying this effect. Overall, this study will contribute to the establishment of clinical exercise therapy rehabilitation guidelines for patients across the entire NSCLC continuum.</p> <p>Trial Registration</p> <p>NCT00018255</p
    • …
    corecore