8 research outputs found

    Effect of soil organic matter content and pH on the toxicity of ZnO nanoparticles to Folsomia candida

    Get PDF
    Organic matter (OM) and pH may influence nanoparticle fate and effects in soil. This study investigated the influence of soil organic matter content and pH on the toxicity of ZnO–NP and ZnCl2 to Folsomia candida in four natural soils, having between 2.37% and 14.7% OM and pHCaCl2pHCaCl2 levels between 5.0 and 6.8. Porewater Zn concentrations were much lower in ZnO–NP than in ZnCl2 spiked soils, resulting in higher Freundlich sorption constants for ZnO–NP. For ZnCl2 the porewater Zn concentrations were significantly higher in less organic soils, while for ZnO–NP the highest soluble Zn level (23 mg Zn/l) was measured in the most organic soil, which had the lowest pH. Free Zn2+ ion concentrations were higher for ZnCl2 than for ZnO–NP and were greatly dependent on pH (pHpw) and dissolved organic carbon content of the pore water. The 28-d EC50 values for the effect of ZnCl2 on the reproduction of F. candida increased with increasing OM content from 356 to 1592 mg Zn/kg d.w. For ZnO–NP no correlation between EC50 values and OM content was found and EC50 values ranged from 1695 in the most organic soil to 4446 mg Zn/kg d.w. in the higher pH soil. When based on porewater and free Zn2+ concentrations, EC50 values were higher for ZnCl2 than for ZnO–NP, and consistently decreased with increasing pHpw. This study shows that ZnO–NP toxicity is dependent on soil properties, but is mainly driven by soil pH

    Effect of different spiking procedures on the distribution and toxicity of ZnO nanoparticles in soil

    Get PDF
    Due to the difficulty in dispersing some engineered nanomaterials in exposure media, realizing homogeneous distributions of nanoparticles (NP) in soil may pose major challenges. The present study investigated the distribution of zinc oxide (ZnO) NP (30 nm) and non-nano ZnO (200 nm) in natural soil using two different spiking procedures, i.e. as dry powder and as suspension in soil extract. Both spiking procedures showed a good recovery ([85 %) of zinc and based on total zinc concentrations no difference was found between the two spiking methods. Both spiking procedures resulted in a fairly homogeneous distribution of the ZnO particles in soil, as evidenced by the low variation in total zinc concentration between replicate samples (\12 % in most cases). Survival of Folsomia candida in soil spiked at concentrations up to 6,400 mg Zn kg-1 d.w. was not affected for both compounds. Reproduction was reduced in a concentrationdependent manner with EC50 values of 3,159 and 2,914 mg Zn kg-1 d.w. for 30 and 200 nm ZnO spiked as dry powder and 3,593 and 5,633 mg Zn kg-1 d.w. introduced as suspension. Toxicity of ZnO at 30 and 200 nm did not differ. We conclude that the ZnO particle toxicity is not size related and that the spiking of the soil with ZnO as dry powder or as a suspension in soil extract does not affect its toxicity to F. candid

    Sorption, dissolution and pH determine the long-term equilibration and toxicity of coated and uncoated ZnO nanoparticles in soil

    No full text
    To assess the effect of long-term dissolution on bioavailability and toxicity, triethoxyoctylsilane coated and uncoated zinc oxide nanoparticles (ZnO-NP), non-nano ZnO and ZnCl2 were equilibrated in natural soil for up to twelve months. Zn concentrations in pore water increased with time for all ZnO forms but peaked at intermediate concentrations of ZnO-NP and non-nano ZnO, while for coated ZnO-NP such a clear peak only was seen after 12 months. Dose-related increases in soil pH may explain decreased soluble Zn levels due to fixation of Zn released from ZnO at higher soil concentrations. At T = 0 uncoated ZnO-NP and non-nano ZnO were equally toxic to the springtail Folsomia candida, but not as toxic as coated ZnO-NP, and ZnCl2 being most toxic. After three months equilibration toxicity to F. candida was already reduced for all Zn forms, except for coated ZnO-NP which showed reduced toxicity only after 12 months equilibratio

    CeO2 nanoparticles induce no changes in phenanthrene toxicity to the soil organisms Porcellionides pruinosus and Folsomia candida

    No full text
    Cerium oxide nanoparticles (CeO2 NPs) are used as diesel fuel additives to catalyze oxidation. Phenanthrene is a major component of diesel exhaust particles and one of the most common pollutants in the environment. This study aimed at determining the effect of CeO2 NPs on the toxicity of phenanthrene in Lufa 2.2 standard soil for the isopod Porcellionides pruinosus and the springtail Folsomia candida. Toxicity tests were performed in the presence of CeO2 concentrations of 10, 100 or 1000 mg Ce/kg dry soil and compared with results in the absence of CeO2 NPs. CeO2 NPs had no adverse effects on isopod survival and growth or springtail survival and reproduction. For the isopods, LC50s for the effect of phenanthrene ranged from 110 to 143 mg/kg dry soil, and EC50s from 17.6 to 31.6 mg/kg dry soil. For the springtails, LC50s ranged between 61.5 and 88.3 mg/kg dry soil and EC50s from 52.2 to 76.7 mg/kg dry soil. From this study it may be concluded that CeO2 NPs have a low toxicity and do not affect toxicity of phenanthrene to isopods and springtails

    CeO2 nanoparticles induce no changes in phenanthrene toxicity to the soil organisms Porcellionides pruinosus and Folsomia candida

    No full text
    Cerium oxide nanoparticles (CeO2 NPs) are used as diesel fuel additives to catalyze oxidation. Phenanthrene is a major component of diesel exhaust particles and one of the most common pollutants in the environment. This study aimed at determining the effect of CeO2 NPs on the toxicity of phenanthrene in Lufa 2.2 standard soil for the isopod Porcellionides pruinosus and the springtail Folsomia candida. Toxicity tests were performed in the presence of CeO2 concentrations of 10, 100 or 1000 mg Ce/kg dry soil and compared with results in the absence of CeO2 NPs. CeO2 NPs had no adverse effects on isopod survival and growth or springtail survival and reproduction. For the isopods, LC50s for the effect of phenanthrene ranged from 110 to 143 mg/kg dry soil, and EC50s from 17.6 to 31.6 mg/kg dry soil. For the springtails, LC50s ranged between 61.5 and 88.3 mg/kg dry soil and EC50s from 52.2 to 76.7 mg/kg dry soil. From this study it may be concluded that CeO2 NPs have a low toxicity and do not affect toxicity of phenanthrene to isopods and springtails
    corecore