45 research outputs found

    Cascaded Multilevel Inverter-Based Asymmetric Static Synchronous Compensator of Reactive Power

    Get PDF
    The topology of the static synchronous compensator of reactive power for a low-voltage three-phase utility grid capable of asymmetric reactive power compensation in grid phases has been proposed and analysed. It is implemented using separate, independent cascaded H-bridge multilevel inverters for each phase. Every inverter includes two H-bridge cascades. The first cascade operating at grid frequency is implemented using thyristors, and the second one—operating at high frequency is based on the high-speed MOSFET transistors. The investigation shows that the proposed compensator is able to compensate the reactive power in a low-voltage three-phase grid when phases are loaded by highly asymmetrical reactive loads and provides up to three times lower power losses in the compensator as compared with the situation when the compensator is based on the conventional three-level inverters implemented using IGBT transistors.publishedVersio

    Influence of oxygen ordering kinetics on Raman and optical response in YBa_2Cu_3O_{6.4}

    Full text link
    Kinetics of the optical and Raman response in YBa_2Cu_3O_{6.4} were studied during room temperature annealing following heat treatment. The superconducting T_c, dc resistivity, and low-energy optical conductivity recover slowly, implying a long relaxation time for the carrier density. Short relaxation times are observed for the B_{1g} Raman scattering -- magnetic, continuum, and phonon -- and the charge transfer band. Monte Carlo simulations suggest that these two relaxation rates are related to two length scales corresponding to local oxygen ordering (fast) and long chain and twin formation (slow).Comment: REVTeX, 3 pages + 4 PostScript (compressed) figure

    A comparative study of high-field diamagnetic fluctuations in deoxygenated YBa2Cu3O(7-x) and polycrystalline (Bi-Pb)2Sr2Ca3O(10)

    Full text link
    We studied three single crystals of YBa2Cu3O{7-x} with Tc= 62.5, 52, and 41 K, and a textured specimen of (Bi-Pb)2Sr2Ca2Cu3O10 with Tc=108 K, for H//c axis. The reversible data were interpreted in terms of 2D lowest-Landau-level fluctuation theory. The data were fit well by the 2D LLL expression for magnetization obtained by Tesanovic etal., producing reasonable values of kappa but larger values of dHc2/dT. Universality was studied by obtaining a simultaneous scaling of Y123 data and Bi2223. An expression for the 2D x-axis LLL scaling factor used to obtain the simultaneous scaling was extracted from theory, and compared with the experimental values. The comparison between the values of the x-axis produced a deviation of 40% which suggests that the hypothesis of universality of the 2D-LLL fluctuations is not supported by the studied samples. We finaly observe that Y123 magnetization data for temperatures above TcT_c obbey a universal scaling obtained for the diamagnetic fluctuation magnetization from a theory considering non-local field effects. The same scaling was not obbeyed by the corresponding magnetization calculated from the two-dimensional lowest-Landau-level theory.Comment: 7 pages 5 figures, accept in Journ. Low Temp. Phy

    Comparative analysis of NOAA REFM and SNB 3 GEO tools for the forecast of the fluxes of high-energy electrons at GEO

    Get PDF
    Reliable forecasts of relativistic electrons at geostationary orbit (GEO) are important for the mitigation of their hazardous effects on spacecraft at GEO. For a number of years the Space Weather Prediction Center at NOAA has provided advanced online forecasts of the fluence of electrons with energy >2 MeV at GEO using the Relativistic Electron Forecast Model (REFM). The REFM forecasts are based on real-time solar wind speed observations at L1. The high reliability of this forecasting tool serves as a benchmark for the assessment of other forecasting tools. Since 2012 the Sheffield SNB3GEO model has been operating online, providing a 24 h ahead forecast of the same fluxes. In addition to solar wind speed, the SNB3GEO forecasts use solar wind density and interplanetary magnetic field Bz observations at L1.The period of joint operation of both of these forecasts has been used to compare their accuracy. Daily averaged measurements of electron fluxes by GOES 13 have been used to estimate the prediction efficiency of both forecasting tools. To assess the reliability of both models to forecast infrequent events of very high fluxes, the Heidke skill score was employed. The results obtained indicate that SNB3GEO provides a more accurate 1 day ahead forecast when compared to REFM. It is shown that the correction methodology utilized by REFM potentially can improve the SNB3GEO forecast
    corecore