10 research outputs found

    The roles of the central executive and visuospatial storage in mental arithmetic: a comparison across strategies

    Get PDF
    Previous research has demonstrated that working memory plays an important role in arithmetic. Different arithmetical strategies rely on working memory to different extents-for example, verbal working memory has been found to be more important for procedural strategies, such as counting and decomposition, than for retrieval strategies. Surprisingly, given the close connection between spatial and mathematical skills, the role of visuospatial working memory has received less attention and is poorly understood. This study used a dual-task methodology to investigate the impact of a dynamic spatial n-back task (Experiment 1) and tasks loading the visuospatial sketchpad and central executive (Experiment 2) on adults' use of counting, decomposition, and direct retrieval strategies for addition. While Experiment 1 suggested that visuospatial working memory plays an important role in arithmetic, especially when counting, the results of Experiment 2 suggested this was primarily due to the domain-general executive demands of the n-back task. Taken together, these results suggest that maintaining visuospatial information in mind is required when adults solve addition arithmetic problems by any strategy but the role of domain-general executive resources is much greater than that of the visuospatial sketchpad. © 2013 The Author(s). Published by Taylor & Francis

    Mathematics students demonstrate superior visuo-spatial working memory to humanities students under conditions of low central executive processing load

    Get PDF
    Previous research has demonstrated that working memory performance is linked to mathematics achievement. Most previous studies have involved children and arithmetic rather than more advanced forms of mathematics. This study compared the performance of groups of adult mathematics and humanities students. Experiment 1 employed verbal and visuo-spatial working memory span tasks using a novel face-matching processing element. Results showed that mathematics students had greater working memory capacity in the visuospatial domain only. Experiment 2 replicated this and demonstrated that neither visuo-spatial short-term memory nor endogenous spatial attention explained the visuo-spatial working memory differences. Experiment 3 used working memory span tasks with more traditional verbal or visuo-spatial processing elements to explore the effect of processing type. In this study mathematics students showed superior visuo-spatial working memory capacity only when the processing involved had a comparatively low level of central executive involvement. Both visuo-spatial working memory capacity and general visuo-spatial skills predicted mathematics achievement

    Interactive apps prevent gender discrepancies in early grade mathematics in a low?income country in Sub?Sahara Africa

    Get PDF
    Globally, gender differences are reported in the early acquisition of reading and mathematics as girls tend to outperform boys in reading whereas boys tend to outperform girls in mathematics. This can have long‐term impact resulting in an under representation of girls in Science, Technology, Engineering and Mathematics (STEM) subjects. Recent research suggests that sociocultural factors account for differences across genders in the acquisition of these foundational skills. In this study, we investigated if a new technology‐based intervention, that included activities accessible to both boys and girls, can reduce gender differences from emerging during the early primary school years. The novel instructional method used in this study employed apps developed by onebillion© delivered individually through touch‐screen tablets. Over a series of experiments conducted in Malawi, a low‐income country in Sub‐Sahara Africa, we found that when children were exposed to standard pedagogical practice typical gender differences emerged over the first grade (Experiment 1). In contrast, boys and girls learnt equally well with the new interactive apps designed to support the learning of mathematics (Experiment 2) and reading (Experiment 3). When implemented at the start of primary education, before significant gender discrepancies become established, this novel technology‐based intervention can prevent significant gender effects for mathematics. These results demonstrate that different instructional practices influence the emergence of gender disparities in early mathematics. Digital interventions can mitigate gender differences in countries where standard pedagogical instruction typically hinder girls from acquiring early mathematical skills at the same rate as boys

    When is working memory important for arithmetic?: the impact of strategy and age

    Get PDF
    Our ability to perform arithmetic relies heavily on working memory, the manipulation and maintenance of information in mind. Previous research has found that in adults, procedural strategies, particularly counting, rely on working memory to a greater extent than retrieval strategies. During childhood there are changes in the types of strategies employed, as well as an increase in the accuracy and efficiency of strategy execution. As such it seems likely that the role of working memory in arithmetic may also change, however children and adults have never been directly compared. This study used traditional dual-task methodology, with the addition of a control load condition, to investigate the extent to which working memory requirements for different arithmetic strategies change with age between 9-11 years, 12-14 years and young adulthood. We showed that both children and adults employ working memory when solving arithmetic problems, no matter what strategy they choose. This study highlights the importance of considering working memory in understanding the difficulties that some children and adults have with mathematics, as well as the need to include working memory in theoretical models of mathematical cognition

    DataSheet2.docx

    No full text
    <p>Interactive apps delivered on touch-screen tablets can be effective at supporting the acquisition of basic skills in mainstream primary school children. This technology may also be beneficial for children with Special Educational Needs and Disabilities (SEND) as it can promote high levels of engagement with the learning task and an inclusive learning environment. However, few studies have measured extent of learning for SEND pupils when using interactive apps, so it has yet to be determined if this technology is effective at raising attainment for these pupils. We report the first observational study of a group of 33 pupils with SEND from two primary schools in Malawi that are implementing a new digital technology intervention which uses touch-screen tablets to deliver interactive apps designed to teach basic mathematical skills. The apps contain topics that align to the national curriculum. To assess learning gains, rate of progress (minutes per topic) for each pupil was determined by calculating the average time taken to complete a topic. Progress rate was then correlated with teacher ratings of extent of disability and independent ratings of pupil engagement with the apps. Results showed SEND pupils could interact with the apps and all pupils passed at least one topic. Average progress rate for SEND pupils was twice as long as mainstream peers. Stepwise regression revealed extent of disability significantly predicted progress rate. Further exploratory correlations revealed pupils with moderate to severe difficulties with hearing and/or language made slower progress through the apps than those with greater functionality in these two domains because the use of verbal instructions within the apps limited their capacity to learn. This original quantitative analysis demonstrates that interactive apps can raise learning standards in pupils with SEND but may have limited utility for pupils with severe difficulties. Software modifications are needed to address specific areas of difficulty preventing pupils from progressing.</p

    DataSheet1.docx

    No full text
    <p>Interactive apps delivered on touch-screen tablets can be effective at supporting the acquisition of basic skills in mainstream primary school children. This technology may also be beneficial for children with Special Educational Needs and Disabilities (SEND) as it can promote high levels of engagement with the learning task and an inclusive learning environment. However, few studies have measured extent of learning for SEND pupils when using interactive apps, so it has yet to be determined if this technology is effective at raising attainment for these pupils. We report the first observational study of a group of 33 pupils with SEND from two primary schools in Malawi that are implementing a new digital technology intervention which uses touch-screen tablets to deliver interactive apps designed to teach basic mathematical skills. The apps contain topics that align to the national curriculum. To assess learning gains, rate of progress (minutes per topic) for each pupil was determined by calculating the average time taken to complete a topic. Progress rate was then correlated with teacher ratings of extent of disability and independent ratings of pupil engagement with the apps. Results showed SEND pupils could interact with the apps and all pupils passed at least one topic. Average progress rate for SEND pupils was twice as long as mainstream peers. Stepwise regression revealed extent of disability significantly predicted progress rate. Further exploratory correlations revealed pupils with moderate to severe difficulties with hearing and/or language made slower progress through the apps than those with greater functionality in these two domains because the use of verbal instructions within the apps limited their capacity to learn. This original quantitative analysis demonstrates that interactive apps can raise learning standards in pupils with SEND but may have limited utility for pupils with severe difficulties. Software modifications are needed to address specific areas of difficulty preventing pupils from progressing.</p

    Mean accuracy (%) and back-transformed mean RT data (ms) with 95% confidence intervals (CI) for the arithmetic problems by domain, age group, strategy and dual task load.

    No full text
    <p>Mean accuracy (%) and back-transformed mean RT data (ms) with 95% confidence intervals (CI) for the arithmetic problems by domain, age group, strategy and dual task load.</p

    Mean accuracy (%) and back-transformed mean RT data (ms) with 95% confidence intervals (CI) for the secondary task by domain, dual task load, age group and strategy.

    No full text
    <p>Mean accuracy (%) and back-transformed mean RT data (ms) with 95% confidence intervals (CI) for the secondary task by domain, dual task load, age group and strategy.</p

    Genomic survey of pathogenicity determinants and VNTR markers in the cassava bacterial pathogen <em>Xanthomonas axonopodis</em> pv. <em>manihotis</em> strain CIO151

    Get PDF
    Xanthomonas axonopodis pv. manihotis (Xam) is the causal agent of bacterial blight of cassava, which is among the main components of human diet in Africa and South America. Current information about the molecular pathogenicity factors involved in the infection process of this organism is limited. Previous studies in other bacteria in this genus suggest that advanced draft genome sequences are valuable resources for molecular studies on their interaction with plants and could provide valuable tools for diagnostics and detection. Here we have generated the first manually annotated high-quality draft genome sequence of Xam strain CIO151. Its genomic structure is similar to that of other xanthomonads, especially Xanthomonas euvesicatoria and Xanthomonas citri pv. citri species. Several putative pathogenicity factors were identified, including type III effectors, cell wall-degrading enzymes and clusters encoding protein secretion systems. Specific characteristics in this genome include changes in the xanthomonadin cluster that could explain the lack of typical yellow color in all strains of this pathovar and the presence of 50 regions in the genome with atypical nucleotide composition. The genome sequence was used to predict and evaluate 22 variable number of tandem repeat (VNTR) loci that were subsequently demonstrated as polymorphic in representative Xam strains. Our results demonstrate that Xanthomonas axonopodis pv. manihotis strain CIO151 possesses ten clusters of pathogenicity factors conserved within the genus Xanthomonas. We report 126 genes that are potentially unique to Xam, as well as potential horizontal transfer events in the history of the genome. The relation of these regions with virulence and pathogenicity could explain several aspects of the biology of this pathogen, including its ability to colonize both vascular and non-vascular tissues of cassava plants. A set of 16 robust, polymorphic VNTR loci will be useful to develop a multi-locus VNTR analysis scheme for epidemiological surveillance of this disease. (Résumé d'auteur
    corecore