81 research outputs found

    A Fine Forehand

    Get PDF

    Mikä vain nähty

    Get PDF
    Aineisto on Opiskelijakirjaston digitoimaa ja Opiskelijakirjasto vastaa aineiston käyttöluvist

    Determination of the bond percolation threshold for the Kagome lattice

    Full text link
    The hull-gradient method is used to determine the critical threshold for bond percolation on the two-dimensional Kagome lattice (and its dual, the dice lattice). For this system, the hull walk is represented as a self-avoiding trail, or mirror-model trajectory, on the (3,4,6,4)-Archimedean tiling lattice. The result pc = 0.524 405 3(3) (one standard deviation of error) is not consistent with the previously conjectured values.Comment: 10 pages, TeX, Style file iopppt.tex, to be published in J. Phys. A. in August, 199

    Percolation Threshold, Fisher Exponent, and Shortest Path Exponent for 4 and 5 Dimensions

    Full text link
    We develop a method of constructing percolation clusters that allows us to build very large clusters using very little computer memory by limiting the maximum number of sites for which we maintain state information to a number of the order of the number of sites in the largest chemical shell of the cluster being created. The memory required to grow a cluster of mass s is of the order of sθs^\theta bytes where θ\theta ranges from 0.4 for 2-dimensional lattices to 0.5 for 6- (or higher)-dimensional lattices. We use this method to estimate dmind_{\scriptsize min}, the exponent relating the minimum path ℓ\ell to the Euclidean distance r, for 4D and 5D hypercubic lattices. Analyzing both site and bond percolation, we find dmin=1.607±0.005d_{\scriptsize min}=1.607\pm 0.005 (4D) and dmin=1.812±0.006d_{\scriptsize min}=1.812\pm 0.006 (5D). In order to determine dmind_{\scriptsize min} to high precision, and without bias, it was necessary to first find precise values for the percolation threshold, pcp_c: pc=0.196889±0.000003p_c=0.196889\pm 0.000003 (4D) and pc=0.14081±0.00001p_c=0.14081\pm 0.00001 (5D) for site and pc=0.160130±0.000003p_c=0.160130\pm 0.000003 (4D) and pc=0.118174±0.000004p_c=0.118174\pm 0.000004 (5D) for bond percolation. We also calculate the Fisher exponent, τ\tau, determined in the course of calculating the values of pcp_c: τ=2.313±0.003\tau=2.313\pm 0.003 (4D) and τ=2.412±0.004\tau=2.412\pm 0.004 (5D)

    Critical Percolation in High Dimensions

    Full text link
    We present Monte Carlo estimates for site and bond percolation thresholds in simple hypercubic lattices with 4 to 13 dimensions. For d<6 they are preliminary, for d >= 6 they are between 20 to 10^4 times more precise than the best previous estimates. This was achieved by three ingredients: (i) simple and fast hashing which allowed us to simulate clusters of millions of sites on computers with less than 500 MB memory; (ii) a histogram method which allowed us to obtain information for several p values from a single simulation; and (iii) a new variance reduction technique which is especially efficient at high dimensions where it reduces error bars by a factor up to approximately 30 and more. Based on these data we propose a new scaling law for finite cluster size corrections.Comment: 5 pages including figures, RevTe

    Freezing of Spinodal Decompostion by Irreversible Chemical Growth Reaction

    Full text link
    We present a description of the freezing of spinodal decomposition in systems, which contain simultaneous irreversible chemical reactions, in the hydrodynamic limit approximation. From own results we conclude, that the chemical reaction leads to an onset of spinodal decomposition also in the case of an initial system which is completely miscible and can lead to an extreme retardation of the dynamics of the spinodal decomposition, with the probability of a general freezing of this process, which can be experimetally observed in simultaneous IPN formation.Comment: 10 page

    Correlated percolation and the correlated resistor network

    Get PDF
    We present some exact results on percolation properties of the Ising model, when the range of the percolating bonds is larger than nearest-neighbors. We show that for a percolation range to next-nearest neighbors the percolation threshold Tp is still equal to the Ising critical temperature Tc, and present the phase diagram for this type of percolation. In addition, we present Monte Carlo calculations of the finite size behavior of the correlated resistor network defined on the Ising model. The thermal exponent t of the conductivity that follows from it is found to be t = 0.2000 +- 0.0007. We observe no corrections to scaling in its finite size behavior.Comment: 16 pages, REVTeX, 6 figures include

    Logarithmic Corrections in Dynamic Isotropic Percolation

    Full text link
    Based on the field theoretic formulation of the general epidemic process we study logarithmic corrections to scaling in dynamic isotropic percolation at the upper critical dimension d=6. Employing renormalization group methods we determine these corrections for some of the most interesting time dependent observables in dynamic percolation at the critical point up to and including the next to leading correction. For clusters emanating from a local seed at the origin we calculate the number of active sites, the survival probability as well as the radius of gyration.Comment: 9 pages, 3 figures, version to appear in Phys. Rev.
    • …
    corecore