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Abstract. We present some exact results on percolation properties of the Ising model, when 
the range of the percolating bonds is larger than the nearest neighbours. We show that the 
phase diagram for next-nearest neighbour percolation can be exactly obtained from the nearest- 
neighbour case, which implies that the percolation threshold, Tp, is still equal to the Ising critical 
temperature Tc, In addition, we present Monte Carlo calculations of the finite size behaviour 
of the correlated resistor network defined on the Ising model. The thermal exponent, t , of the 
conductivity that follows from it is found to be / =  0.2000 ±  0.0007, We observe no corrections 
to scaling in its finite size behaviour.

1* Introduction

The connection between percolation and the Ising model has been a popular subject for a 
long time. One considers so-called Ising clusters made up of nearest-neighbour spins with 
the same spin value. The connectivity behaviour of these clusters is called correlated site 
percolation, as the probability distribution of the percolating and non-percolating sites is a 
correlated one.

The interest in this problem arose because these Ising clusters were believed to have the 
same properties as the droplets in the droplet model [1], i.e. they should diverge at the Ising 
critical point with the same critical exponents as those of the Ising model. It became clear 
that they did indeed diverge [2] at the Ising critical point, but not [3] with Ising exponents. 
An alternative cluster definition was needed to have clusters with the properties of droplets 
in the droplet model. These new clusters are precisely the random clusters from the random 
cluster formulation of the Potts model, which work is due to Fortuin and Kasteleyn [4], In 
the context of the Ising model, these clusters are called Coniglio-Klein clusters [5], and are 
defined by putting bonds between each pair of nearest-neighbour up-spins, but now with 
a probability p  =  1 — exp(—2K),  where K  is the Ising coupling. Not all bonds of the 
Ising clusters appear in the Coniglio-Klein clusters, such that the latter are» in that sense, 
‘smaller' than Ising clusters. The Coniglio-Klein clusters display [5] the correct critical 
behaviour: they diverge at the Ising critical point, their linear size diverges as the Ising 
correlation length, and the mean cluster size behaves as the susceptibility.

Both the Ising clusters and the Coniglio-Klein clusters have their percolation point at 
the Ising critical temperature, albeit with different critical behaviour. The full picture of this 
cluster behaviour emerged [6,7] when the behaviour of both types of clusters was identified 
with the phase diagram of the #-state dilute Potts model in the limit q -» 1. The tricritical
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point in this phase diagram describes the behaviour of the Ising clusters. This tricritical 
point falls in the same universality class as the Ising critical point [8] in the sense that the 
central charge is c =  but the critical exponents involved in the behaviour of the Ising 
clusters do not fit into the Kac-table [9]; they correspond to half-integer values of the unitary 
grid, The Coniglio-Klein clusters are described by the 1 +  1 state symmetric fixed point in
this phase diagram.

Our motivation to reconsider the problem of correlated site percolation is not the droplet 
theory of the Ising model but arises from a study of correlated resistor networks; see below. 
In this paper, we consider Ising clusters that are made up of bonds with a larger percolation 
range, that is, bonds are placed between nearest-neighbour up-spins, but also between next- 
and further-neighbouring pairs of equal spins. Let us, throughout this paper, denote the 
clusters consisting of bonds between nearest and next-nearest neighbour spin pairs by nnn- 
clusters. In this language the Ising clusters are nn-clusters.

It is immediately clear that, if one considers bonds with a longer and longer percolation 
range, clusters get bigger and the percolation threshold eventually will move to a 
temperature, Tp, that is lower than TCi the Ising critical temperature. In that case, the 
type of correlation is expected to be random percolation. In the limit of percolating bonds 
with an infinite range, the percolation temperature moves to Tp =  0 and there is crossover to 
classical critical behaviour [10]. In three dimensions this effect of a shift in the percolation 
threshold has previously occurred with Ising clusters (nn-clusters); the percolation threshold 
lies at a temperature a few percent below Tc [11], whereas the Coniglio-Klein clusters have 
their percolation threshold at Tc* In two dimensions it is known, as stated above, for nn- 
clusters Tp coincides with It was believed [12] that for nnn-clusters Tp < Tc, however, 
in this paper we shall show that Tp =  Tc for nnn-clusters.

These alternative cluster definitions can be useful in some applications of correlated
percolation. In another paper [13], we present a model, based on correlated percolation,
to explain the experimental results for colossal magnetoresistance. The latter phenomenon
is presently a hot topic in solid state physics [14]. Our model is a correlated resistor
network, obtained by replacing bonds with resistances yielding an effective resistance as
an Ising expectation value. In the present work, we present the technical analysis of the
correlated percolation model with percolating bonds having a longer percolation range than
nearest neighbour. In particular, the resulting phase diagram is used for understanding the
experimental results of colossal magnetoresistance. The correlated resistor network has, to
our knowledge, never been studied in any literature. We performed Monte Carlo calculations
to measure the critical exponents of the CRN. These calculations are also presented in this 
paper.

2, The model

We will be concerned with ihe usual Ising model on a square lattice with Hamiltonian

sj
(U) j

where K  is the inverse temperature and h is the magnetic field. The first summation is 
over nearest ne.ghbours only. Note that, throughout this paper we will be considering 
two different ranges of percolating bonds, i.e. nearest and next-nearest neighbour. Note

M ir tZ ;  f • bT aCtiQn is' throuSh°ut the paper, exclusively via nearest- 
neighbour couplings, as in the above Hamiltonian,
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Figure 1. An illustration of the theorem presented in 
the text. On the sites of a lattice, black and white spins 
are placed. Spins on the boundary are always black. 
Bonds between black spins are present between each 
pair of black spins that are nearest neighbours. The 
same is true for the white spins, but here bonds are 
drawn if the spins are next-nearest neighbours as well. 
It can easily be inferred that a face of a black cluster is 
either empty or wholly occupied with one and only one 
white cluster. Notice that the inclusion of next-nearest 
neighbour bonds is essential.

Figure 2, The phase diagram for percolation of Ising 
clusters. Up-spins are considered percolating, and 
clusters are defined by putting bonds between each 
neighbouring pair of up-spins. Tc is the Ising critical 
point, and T and h are temperature and magnetic field, 
respectively. The heavy full curve is a critical line of 
percolation that is in the universality class of random 
percolation. Tc is a tricritical point for percolation, and 
the broken line is a first-order transition, for Ising as 
well as for percolation.

First consider the nn-clusters by putting bonds between all neighbouring pairs of up- 
spins, such as the clusters made of the black spins in figure 1. (To adopt the terminology of 
the figure, we will label the Ising spins as black and white instead of up and down.) In the 
same figure, also the nnn-clusters are illustrated but now for the white spins. Here bonds 
are put between next-nearest neighbouring pairs of white spins as well.

The percolation phase diagram for the nn-clusters is known [7] and shown in figure 2. 
The heavy full curve is a critical percolation transition. Its exact location is not known, 
but the location of the endpoint at T  =  Tc is exact [2]. The other endpoint, at T =  oo, 
corresponds to random percolation and lies at the value of h corresponding to the percolation 
threshold [15] pc & 0.5927 for random percolation. This value denotes the density of up- 
spins. The corresponding value of h is h ~  0.188. The critical percolation line is in the 
universality class of random percolation, described by the critical q =  1 state Potts model. 
The line merges smoothly with the 7-axis at the Ising critical point. For percolation, this 
point turns out [7] to be a tricritical point; it is the tricritical point of the q =  1 state dilute 
Potts model, where, apart from the usual Potts spins, also vacancies are allowed.

From this phase diagram the corresponding diagram for nnn-clusters can be derived. 
Figure 1 illustrates the theorem [16] that will be needed for this derivation of the phase 
diagram. It can easily be seen from this figure that there exists a geometrical relation 
between the black nn-clusters and the white nnn-clusters. The theorem states that every 
face o f  a black nn-cluster is either empty or is wholly occupied by one and only one white 
nnn-cluster. A face is a closed area surrounded by elementary loops consisting of the 
bonds of one cluster. Let us introduce the following notation: let / s ,  c^, bn and ng be 
the number of faces, clusters, bonds and sites respectively that correspond to the black 
spins and nn-clusters in a certain spin configuration. For the white spins and nnn-clusters, 
these quantities are ƒ£, c^ , and ri*w respectively, where the star denotes the fact that it 
concerns nnn-clusters. The theorem then states that
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where ƒf  denotes the number of empty black faces. The number of faces, bonds, sites 
and clusters is furthermore coupled via Euler’s equation

f B = b B ~ n B -VcB Jt \ .

This relation is easily derived by induction and holds for non-cyclic boundary conditions, 
e.g. all spins on the boundary are black. Combining these two relations yields

c*w =  cB +  bB -  n B -  f T  +  1 ■
Thus, this relation expresses the number of white nnn-clusters, c^ , in terms of the number 
of black nn-clusters cB. Apart from the numbers of clusters it involves only locally defined
quantities: bonds, sites and empty faces.

The above relations are purely geometrical and hence are completely independent of
the probability distribution of the black and white spins. Therefore they are valid as Ising 
expectation values as well:

(c*w) =  {cB) +  (bB) -  (nB) -  { C )  +  1 (1)

where the brackets denote the expectation values. Note that the numbers of bonds, sites 
and empty black faces are simply local Ising operators, that is

(bB) =  +  Si)(l  +  Sj))

which amounts to counting the number of black bonds. In the same way

IJ
counts the number of black spins and

</ f )  =  T6 E  K 1 +  +  W  +  5*)(1  +  Sl))
w n

counts the number of empty, black faces, where (ijkl) denotes a summation over each 
elementary plaquette of the square lattice.

The expectation value of the number of clusters plays the role of the free energy in 
a percolation problem [16]. It becomes non-analytic at a percolation transition. From 
equation (1) we see that can only become critical when cb is critical, that is, when the 
black spins are at their percolation threshold, or when the Ising expectation values become 
non-analytic, that is, at the Ising critical point and at the coexistence line T < Tcy h =  0. 
This immediately yields the phase diagram for percolation of the black nnn-clusters: it is 
the mirror image of that of the nn-clusters with h replaced by -f t .  This phase diagram is 
shown in figure 3,

It is somewhat surprising that extending the range of percolating bonds to next-nearest 
neighbours does not alter the percolation threshold at the 71-axis. So for next-nearest 
neighbour percolating bonds Tp =  Tc still holds. It was expected [12] that a larger 
percolation range immediately causes a lower percolation threshold Tp < Tc. Due to the 
above geometrical relations this is not the case. Upon extending the percolation range even 
further than the next-nearest neighbour, however, no such relations exist, and we expect the 
percolation threshold, Tp% indeed to drop below the Ising critical temperature Tc.

In the latter case, the topology of the phase diagram will change. There is no tricritical 
point any more, and the critical percolation line will end somewhere at the T-axis below 
Tc. Beyond this point, there is still a first-order transition for percolation. We expect the 
percolation point, Tp, in that case to be a critical endpoint. Such a point is expected [17] to 
have, in addition to the critical exponents of the universality class of the critical line, also
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Figure 3. The same phase diagram as in figure 2, but now for nnn-clusters. Percolating bonds 
are drawn between pairs of up-spins that are nearest or next-nearest neighbours. The phase 
diagram is the same as that for nn-clusters but with h replaced with — h.

a first-order exponent y =  2 . Indeed, when the range of percolating bonds becomes very 
large, it will eventually become larger than the Ising correlation length. In such a case, 
correlations in the probability distribution of empty and occupied sites are only present on 
a much smaller scale than the range of percolating bonds. This strongly suggests that the 
universality class of the endpoint of the critical line is that of random percolation.

Eventually, when the percolation range approaches infinity, percolation is believed to 
exhibit classical critical behaviour [10], that is, displays mean-field exponents.

3. Scaling analysis

From universality, we expect both types of critical behaviour, nn-percolation and nnn- 
percolation, to be in the same universality class. In the light of equation (1), this statement 
is less obvious than it seems. The singular behaviour of the ‘free energy’ c ^  of nnn-clusters 
is expressed in c$ but also in Ising operators, and both cq and the Ising expectation values 
become critical. Hence, in addition to the critical behaviour of cb also Ising exponents show 
up, In particular, when c^  is considered as a function of the scaling field m , in addition to 
the exponent 2/y  that is expected to describe the non-analytic behaviour of the free energy 
cb> also the magnetization exponent |  is present.

The following analysis relies on the work of Stella and Vanderzande [7] on correlated 
percolation in the Ising model, which, in its turn, goes back to results from several authors 
on the <y-state Potts model that are reviewed by Nienhuis in [8 ]. Their work yields the 
exact critical behaviour of the q -state (dilute) Potts model. We will only globally repeat the 
analysis, and refer the interested but unfamiliar reader to these references.

Nn-percolation is in the universality class of the dilute q-state Potts model in the limit 
of q Its Hamiltonian [6,7] is

n  = - L H n>ni ~ A J 2 ni - J -  I) -  II T  nj (8ai., -  1). (2)
(U) j (ij) j

The variables =  0, 1 are the Potts lattice gas variables. Potts spins 07 =  0 , . , . ,  q are 
present on the sites where n,- =  1.

For ¿ y = l  the Hamiltonian becomes equal to the Ising Hamiltonian and completely 
independent of J and H . Substituting S( =  2m — 1 turns the lattice gas variables into Ising 
variables. The Hamiltonian then becomes, apart from a constant,
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with K =  L/4 and h =  2L +  A/2. This means that the free energy resulting froi 
equation (2) for q -  1 is equal to that of the Ising model. The full free energy is

f ( L ,  A, J, H , q ) = ~ w1̂ ^ lnZ(W)(Z' ’ A ' J’ H ' ^

where N  denotes the number of sites on the lattice. The generating function [4] fo
percolation is

. .  . . d /(L , A, J, H, q) 
c(L, A, J, H ) =  ---------- o :

0 =  1

Quantity c is, with H =  0, the expectation value of the number of clusters. It plays the role 
of the free energy in percolation problems, but is actually the derivative of a free energy 
with respect to a symmetry parameter. The limit J  —* oo corresponds to nn-clusters, and
J =  2K yields the Coniglio-Klein clusters.

In the language of the renormalization group, the tricritical point in the q — 1 dilute 
Potts model has four relevant exponents and corresponding scaling fields, two thermal and 
two magnetic ones. Expressing the free energy in terms of these scalings fields u,, the 
scaling relation is

ƒ (« !........u4,q) = b 2 ......... bytun,q) (4)

where b is the renormalization length, and the tricritical point is located at u\ =  
m4 =  0. The exact values of the exponents are [8,18] y\ =  y  anc* >’2 =  1 fcr the thermal
exponents (which are just the Ising critical exponents) and y$ =  and for
the magnetic exponents. Note that the ‘field’ q> which is a symmetry parameter, cannot 
change under renormalization. Differentiating this free energy with respect to q yields the 
percolation free energy. Applying this to the above scaling relation yields, apart from the 
direct derivative to q , also derivatives with respect to the thermal scaling fields «j and 
U2. These fields are nonlinear functions of the coupling constants and vanish at the critical 
point, so correct to first order in the couplings, they are

u j — K — Kc (q) +  

«2 =  A -  hc(q) +  ■
(5)
(6)

when J =s oo. The location of the tricritical point thus depends on the value of q. The 
remaining two fields u3 and U4 are magnetic scaling fields; they correspond to Potts-likc 
magnetic fields. The Potts-model can only be critical if those fields are zero, regardless of 
the value of q , which means that the derivative of these fields with respect to q yields zero. 

From these remarks it follows that in the expression for c several derivatives are present: 
a direct derivative with respect to q and derivatives with respect to the thermal scaling fields:

I L  _l 4 .
d q  Qu\ 3q

V
3«2 a q (7)

Applying equation (4) to this expression and taking the limit of q -> 1 yields the critical
behaviour of c. Note that the last two terms of the right-hand side of (7) are, with q — 1,
just derivatives of the Ising free energy; they give the Ising energy and magnetization, and
thus yield Ising critical behaviour. The values of the exponents Vi and yi  are the Ising
values }>] — 1 and yi =  This gives for the singular behaviour of c as a function of the 
thermal field u ,

c ~  /4 ||« ,|2/-V| +  A2\u) ((2_.'■! )/yi +  J4 3 jMl |(2-'=)/y.
(8 )
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The most relevant of these exponents is (2 -  yi) /y \  =  ?, the exponent of the Ising order8

parameter. The singular behaviour of c thus is described by an exponent in contrast to 
what is expected for the behaviour of a free energy-like quantity: normally in a free energy 
only the first term in equations (7) and (8) appears, yielding a critical exponent 2 / y { =  2 for 
the percolation free energy c. In our case, this exponent indeed appears in the expression 
for c, but is dominated by the exponent The fact that an exponent less than 1 appears 
in the ‘free energy’ (which is forbidden by stability) is due to the fact that c is not a true 
free energy but a derivative of a free energy with respect to the symmetry parameter q , see 
equation (3).

The order parameter P (the density of sites in the infinite cluster) and the ‘susceptibility’ 
(the mean cluster size) arise from differentiating c with respect to H. The free energy, ƒ, 
itself becomes completely independent of H  in the limit for <7 —> 1, which means that only 
the derivatives of Bf/dq  with respect to H yield a non-zero result. The other terms in 
equation (7 ) vanish upon taking the derivative. This means that the critical behaviour of 
the order parameter and the susceptibility is not affected by the ‘wrong’ critical behaviour 
of c.

From the scaling results (8 ) of c we can derive the critical behaviour of the nnn-clusters 
using equation (1). The dominating exponent in the right-hand side of (1) is again which 
appears in c but also in the Ising magnetization (n&). This shows that the critical behaviour 
of c and c*, that is, of nn-clusters and nnn-clusters, is governed by the same exponents.

The same must be true for the order parameter, F , and the susceptibility of nnn- 
percolation. Again these quantities arise from differentiating the free energy c* with respect 
to the Potts field H . Although c* is different from c in its dependence on H y both amount 
to a dilute q =  1 states Potts model. With the identification of the critical behaviour of c 
and c* it follows that at Tc both free energies must be at a tricritical point in the full phase 
diagram of this model.

We conclude that percolation of nn-clusters and of nnn-clusters is in the same 
universality class. The critical behaviour of the percolation quantities is governed by the 
same set of critical exponents.

4. The correlated resistor network

The behaviour of the Ising model as a resistor network is relevant for our work on colossal 
magnetoresistance [13], A percolation model is turned into a resistor network [19] by 
replacing the bonds with resistors. Non-percolating bonds are left empty (that is, have 
infinite resistance), bonds that are present get a unit resistance. This can be done both for 
nn-clusters and nnn-clusters, The assignment of resistors is depicted in figure 4.

For random percolation the resistor network is a random resistor network. The 
corresponding correlated resistor network has, as far as we know, never been studied. 
In this section we present our calculations on the correlated resistor network. The interest 
in resistor network problems is in the expectation value of the overall resistance of the 
(infinite) lattice. To be more precise: consider a lattice consisting of L x L spins, where 
L eventually is sent to infinity, and keep the lower row at a fixed potential V =  0 and the 
upper row at V =  1. The interest is in the overall conductance, cr, of the lattice, which is 
in this case equal to the expectation value of the current.

The phase diagram of the resistor network is of course the same as that of its percolation 
counterpart: when there is percolation, the conductance is finite, and the conductance is zero 
when there is no percolation. Experimental results for colossal magnetoresistance show a
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8
u

R= I

— LEEoo

(a)

ji

Figure 4. The assignment of resistors to a spin configuration. Assignment for nn-dusters is 
shown in (a), for nnn-clusters in (b). Here black spins (spin-up) are considered percolating, so 
bonds between two black spins have a unit resistance. Bonds between biack and white spins or 
between two white spins get an infinite resistance.

sharp increase in the resistance as a function of temperature at or nearby the Curie point Tc. 
The resistance drops sharply both above and below this point. From our phase diagrams it 
is directly clear that the diagram of figure 2 is ruled out. So conduction via next-nearest 
neighbour bonds should at least be present to produce the correct phase diagram.

Turning, however, to critical exponents the situation is different. In this case it is 
the exponent t governing the vanishing conductance, cr, upon approaching the percolation
threshold;

o { T ) ~  \ T ~ T J  f o r T - > TP'

Based on universality (again confirmed for the percolation exponents) one may well assume 
that the exponent t is the same for nn- and nnn-networks. Hence we studied the (simpler) 
case of the resistor network with only nn-clusters.

The random resistor network is a notoriously unsolved problem in statistical physics, 
but there are good numerical estimates of the exponent t . The best estimate [20] in two 
dimensions known to us is t =  1.299 ±  0.002. To obtain the value of t for the correlated 
resistor network in the Ising case, at the tricritical percolation point, we performed Monte 
Carlo calculations at the Ising critical point, and calculated the Ising expectation value of 
the conductance for different system sizes. We used the Wolff-algorithm [21] for the Monte 
Carlo part, and the multigrid method of Edwards et al [22], based on the standard code 
AMG1R4 [23], to calculate the conductance of a spin configuration.

To test our program, we calculated the exactly known [7,8] exponent of the order
parameter. The order parameter of percolation is the density of sites, P, in the infinite
cluster. From finite size scaling, it follows that this quantity scales with the linear system 
size L as

P(L) ~  L 2 + -V i  for L oo (9)

where is the most relevant magnetic eigenvalue. In our Monte Carlo runs, we measured 
the number of sites in the ‘spanning cluster', the cluster that extends over the lattice and 
thus allows for conductance. With the scaling equation, the behaviour of P as a function of 
the system size yields an estimate of y/,. We calculated P with the system size L running 
from 7 to 350, and the data are plotted in figure 5. The figure, a log—log plot, shows that the 
system sizes are too small to exhibit the behaviour of equation (9); corrections to scaling 
have to be included. We did this, and found yh =  1.945 ±  0.005 and a correction to scaling
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O

Linear system size

Figure 5. Log-Iog plot of the density of sites P  in the spanning cluster at the Ising critical point, 
as a function of the linear system size L . The plot shows a far from straight line, meaning that 
corrections to scaling are important. The broken curve is the result of our fit against the function 
P(L)  =  a \L ~ a ( \ -\-aiL~P). The values of a and are a  =  0.055i0>005 and /? =  0 .9 2 i0 .0 7 .

exponent a> =  0.96 ±  0.08. The exact result is 
well within the error bars.

187
96 1.948. Our estimate thus agrees

It is believed that a similar finite size scaling relation is valid for the conductance a.  It
should scale with the linear system size, L, as

a(L )  ~  L~,/v (10)

where v is the percolation exponent of the correlation length. We calculated the conductance 
again with L  running from 7 to 350. The data are plotted in figure 6; the log-log plot almost 
shows a straight line. In fitting the data to equation (10), we tried to include a correction 
to scaling term, but, due to the almost perfect scaling behaviour, this did not yield sensible 
results. Therefore we performed the fit against equation (10) without additional terms, 
yielding the value t / v  =  0.2000 ±  0.0007. Due to the absence of the correction to scaling 
term the error in this result might be an underestimation of the actual error.

&e
IS
TJcoU

Linear system size

Figure 6. Log-log plot of the conductance a  of the lattice at the Ising critical point, as a function 
of the linear system size L. The plot shows an almost a straight line. Fitting the scaling behaviour 
with a correction to scaling term did not yield sensible results. The broken line is the result of 
our fit against the function o( L)  =  aL~a > giving a value of a 0.2000 ±  0.0007.
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The exponent v of percolation at the Ising critical point is v =  1 for the direction
= yjr for the other directions. That means that the exponent t

that governs the vanishing conductance at Tc is t «  0.200 for the temperature direction and 
t

parallel to the 7-axis and v

0.107 for the field direction. This is a surprisingly low result, as compared with the t 
value of the random resistor network, t «  1.30. The presence of critical correlations thus
strongly influences the value of the conductance exponents.

Equation (10) relies on the validity of finite size scaling, and it is in this case not a 
priori clear that it is valid, since there does not exist a rigorously defined renormalization 
transformation for the conductance, neither for the random resistor network nor for the 
correlated resistor network. Our case is the latter, and we checked the validity of the scaling 
assumption by performing calculations for different system sizes and different temperatures
around T — Tc,

Scaling can be derived if there is a field in the percolation model that couples to the 
conductance a and that shows a similar behaviour under renormalization transformations as, 
e.g. the percolation order parameter. Let us call this field hc and its corresponding critical 
exponent yc. The ‘free energy1 c then obeys

c(uti hc, V) — b 2c(by'uh bychCi L /b )

where b is the renormalization length, ut is the reduced temperature, and L is the system 
dimension. Such a field hc is not known but, assuming that it exists, the scaling relation 
of the conductance can be derived. The conductance is the derivative with respect to this 
field:

a
dc

dh,
(U)

Putting b =  L and u{ =  hc =  0 yields equation (10) with t / v  =  2 -  y c. If we do not 
set ut to zero, it follows from equation (11) that a L ^ v is a function of L yiut . Plotting 
crLt/v against L y,ut (with yt =  1/v =  1 in the Ising model) must display the so-callcd data 
collapse: plots for different values of L must collapse onto the same curve.

We performed Monte Carlo calculations around the critical point for different system 
sizes and plotted the conductance as described above. The plot is shown in figure 7 and

1.0

0.8

J  0.6

o.t)
0.4

0.2

0.0

(J-Jc)/Jc L

Figiire 7. The Ising expectation value of the conductance in the neighbourhood or the critical 
point for different system sizes L. Error bars have the magnitude of the symbol size The 
values for the exponents used are k =  1 and / =  0.20. The data for different system sizes 
clearly collapse onto the same curve, with small deviations arising only away from the critical 
point for smaller system sizes. This clearly shows that the concept of scaling applies to .Ik-
conductance.
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clearly shows that the values of the conductance fall onto the same curve. This justifies the 
validity of the scaling assumption in the case of the correlated resistor network.
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