324 research outputs found

    Collective modes of an Anisotropic Quark-Gluon Plasma II

    Full text link
    We continue our exploration of the collective modes of an anisotropic quark gluon plasma by extending our previous analysis to arbitrary Riemann sheets. We demonstrate that in the presence of momentum-space anisotropies in the parton distribution functions there are new relevant singularities on the neighboring unphysical sheets. We then show that for sufficiently strong anisotropies that these singularities move into the region of spacelike momentum and their effect can extend down to the physical sheet. In order to demonstrate this explicitly we consider the polarization tensor for gluons propagating parallel to the anisotropy direction. We derive analytic expressions for the gluon structure functions in this case and then analytically continue them to unphysical Riemann sheets. Using the resulting analytic continuations we numerically determine the position of the unphysical singularities. We then show that in the limit of infinite contraction of the distribution function along the anisotropy direction that the unphysical singularities move onto the physical sheet and result in real spacelike modes at large momenta for all "out-of-plane" angles of propagation.Comment: 13 pages, 8 figure

    Summary of the High Ice Water Content (HIWC) RADAR Flight Campaigns

    Get PDF
    NASA and the FAA conducted two flight campaigns to quantify onboard weather radar measurements with in-situ measurements of high concentrations of ice crystals found in deep convective storms. The ultimate goal of this research was to improve the understanding and develop onboard weather radar processing to detect regions of high ice water content ahead of an aircraft and enable tactical avoidance of the potentially hazardous conditions. Both High Ice Water Content (HIWC) RADAR campaigns utilized the NASA DC-8 Airborne Science Laboratory which was equipped with a Honeywell RDR-4000 weather radar and icing instruments to characterize the ice crystal clouds. The purpose of this paper is to summarize how these campaigns were conducted and highlight key results

    Summary of the High Ice Water Content (HIWC) RADAR Flight Campaigns

    Get PDF
    NASA and the FAA (Federal Aviation Administration) conducted two flight campaigns to quantify onboard weather radar measurements with in-situ measurements of high concentrations of ice crystals found in deep convective storms. The ultimate goal of this research was to improve the understanding and develop onboard weather radar processing to detect regions of high ice water content ahead of an aircraft and enable tactical avoidance of the potentially hazardous conditions. Both High Ice Water Content (HIWC) RADAR campaigns utilized the NASA DC-8 Airborne Science Laboratory which was equipped with a Honeywell RDR-4000 weather radar and icing instruments to characterize the ice crystal clouds. The purpose of this paper is to summarize how these campaigns were conducted and highlight key results

    A proposal for multi-tens of GW fully coherent femtosecond soft X-ray lasers

    Get PDF
    X-ray free-electron lasers1,2 delivering up to 131013 coherent photons in femtosecond pulses are bringing about a revolution in X-ray science3?5. However, some plasma-based soft X-ray lasers6 are attractive because they spontaneously emit an even higher number of photons (131015), but these are emitted in incoherent and long (hundreds of picoseconds) pulses7 as a consequence of the amplification of stochastic incoherent self-emission. Previous experimental attempts to seed such amplifiers with coherent femtosecond soft X-rays resulted in as yet unexplained weak amplification of the seed and strong amplification of incoherent spontaneous emission8. Using a time-dependent Maxwell?Bloch model describing the amplification of both coherent and incoherent soft X-rays in plasma, we explain the observed inefficiency and propose a new amplification scheme based on the seeding of stretched high harmonics using a transposition of chirped pulse amplification to soft X-rays. This scheme is able to deliver 531014 fully coherent soft X-ray photons in 200 fs pulses and with a peak power of 20 GW

    Measurement of inclusive D*+- and associated dijet cross sections in photoproduction at HERA

    Get PDF
    Inclusive photoproduction of D*+- mesons has been measured for photon-proton centre-of-mass energies in the range 130 < W < 280 GeV and a photon virtuality Q^2 < 1 GeV^2. The data sample used corresponds to an integrated luminosity of 37 pb^-1. Total and differential cross sections as functions of the D* transverse momentum and pseudorapidity are presented in restricted kinematical regions and the data are compared with next-to-leading order (NLO) perturbative QCD calculations using the "massive charm" and "massless charm" schemes. The measured cross sections are generally above the NLO calculations, in particular in the forward (proton) direction. The large data sample also allows the study of dijet production associated with charm. A significant resolved as well as a direct photon component contribute to the cross section. Leading order QCD Monte Carlo calculations indicate that the resolved contribution arises from a significant charm component in the photon. A massive charm NLO parton level calculation yields lower cross sections compared to the measured results in a kinematic region where the resolved photon contribution is significant.Comment: 32 pages including 6 figure

    Measurement of Jet Shapes in Photoproduction at HERA

    Full text link
    The shape of jets produced in quasi-real photon-proton collisions at centre-of-mass energies in the range 134277134-277 GeV has been measured using the hadronic energy flow. The measurement was done with the ZEUS detector at HERA. Jets are identified using a cone algorithm in the ηϕ\eta - \phi plane with a cone radius of one unit. Measured jet shapes both in inclusive jet and dijet production with transverse energies ETjet>14E^{jet}_T>14 GeV are presented. The jet shape broadens as the jet pseudorapidity (ηjet\eta^{jet}) increases and narrows as ETjetE^{jet}_T increases. In dijet photoproduction, the jet shapes have been measured separately for samples dominated by resolved and by direct processes. Leading-logarithm parton-shower Monte Carlo calculations of resolved and direct processes describe well the measured jet shapes except for the inclusive production of jets with high ηjet\eta^{jet} and low ETjetE^{jet}_T. The observed broadening of the jet shape as ηjet\eta^{jet} increases is consistent with the predicted increase in the fraction of final state gluon jets.Comment: 29 pages including 9 figure

    Angular and Current-Target Correlations in Deep Inelastic Scattering at HERA

    Get PDF
    Correlations between charged particles in deep inelastic ep scattering have been studied in the Breit frame with the ZEUS detector at HERA using an integrated luminosity of 6.4 pb-1. Short-range correlations are analysed in terms of the angular separation between current-region particles within a cone centred around the virtual photon axis. Long-range correlations between the current and target regions have also been measured. The data support predictions for the scaling behaviour of the angular correlations at high Q2 and for anti-correlations between the current and target regions over a large range in Q2 and in the Bjorken scaling variable x. Analytic QCD calculations and Monte Carlo models correctly describe the trends of the data at high Q2, but show quantitative discrepancies. The data show differences between the correlations in deep inelastic scattering and e+e- annihilation.Comment: 26 pages including 10 figures (submitted to Eur. J. Phys. C
    corecore